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Abstract. The Web Infrastructure Model (WIM) is a generic Dolev-Yao style model of the Web
infrastructure. The WIM has first been published in [9] and has been extended in follow-up
publications [6, 7, 10, 11, 12, 13]. This document consolidates these various extensions to provide a
single reference version of the WIM for subsequent work.
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Figure 1: Illustration of the WIM’s communication model.

1 Overview of the WIM

1.1 Introduction
The Web Infrastructure Model (WIM) is a generic Dolev-Yao style model of the Web infrastructure.
The WIM has first been published in [9] and has been extended in follow-up publications [6, 7, 10,
11, 12, 13]. This document consolidates these various extensions to provide a single reference version
of the WIM for subsequent work. In this section we recall this model following the descriptions in
said publications with more technical definitions given in Section 2.

The WIM is designed independently of a specific Web application and closely mimics published
(de-facto) standards and specifications for the Web, for example, the HTTP/1.1 and HTML5 stan-
dards and associated (proposed) standards. The WIM defines a general communication model, and,
based on it, Web systems consisting of Web browsers, DNS servers, and Web servers as well as Web
and network attackers.

Extensions not covered by this document. The following mechanisms and extensions have
been introduced in previous publications and are not covered by this document:
• Extensions forWebSockets andWebRTC can be found in [6] in Section 2.10.6 and Section 2.12
respecetively, with further details in Appendices A.4.6 and A.4.7.

• The formal definition of a challenge browser for the privacy analysis of single sign-on systems
can be found in Definition 74 in Appendix C of [17].

• Extensions for DOM event processing, the Web Payment APIs and a framework for
service workers can be found in Section V of [4], with details in Appendices B and C.

• Extensions for the OpenID Financial-grade API that model OAuth 2.0 Token Binding
can be found in Appendix G of [8].

1.2 Communication Model
The communication model of the WIM is illustrated in Figure 1. The main entities in the model are
(atomic) processes, which are used to model browsers, servers, and attackers. Each process listens to
one or more (IP) addresses. Processes communicate via events, which consist of a message as well
as a receiver and a sender address. In every step of a run, one event is chosen non-deterministically
from a “pool” of waiting events and is delivered to one of the processes which listens to the event’s
receiver address. The process can then handle the event and output new events, which are added
to the pool of events, and so on.

1.3 Terms, Messages, and Events
As usual in Dolev-Yao models (see, e.g., [1, 5]), events and messages are expressed as formal terms
over a signature Σ. The signature contains constants (for (IP) addresses, strings) as well as sequence,
projection, and function symbols (e.g., for encryption/decryption and signatures).
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Formally, the signature Σ for the terms and messages considered in this work is the union of the
following pairwise disjoint sets of function symbols:
• constants C = IPs ∪ S ∪ {>,⊥,♦} where the three sets are pairwise disjoint, S is interpreted to
be the set of ASCII strings (including the empty string ε), and IPs is interpreted to be a set of
(IP) addresses,

• function symbols for public keys, (a)symmetric encryption/decryption, signatures, hashing, and
computing and verifying message authentication codes: pub(·), enca(·, ·), deca(·, ·), encs(·, ·),
decs(·, ·), sig(·, ·), checksig(·, ·), extractmsg(·), hash(·), mac(·, ·), and checkmac(·, ·),

• n-ary sequences 〈〉, 〈·〉, 〈·, ·〉, 〈·, ·, ·〉, etc., and
• projection symbols πi(·) for all i ∈ N.
Based on Σ, we define terms as follows: Let X = {x0, x1, . . . } be a set of variables and N be

an infinite set of constants (nonces) such that Σ, X, and N are pairwise disjoint. For N ⊆ N , we
define the set TN (X) of terms over Σ ∪N ∪X inductively as usual:

1. If t ∈ N ∪X, then t is a term.

2. If f ∈ Σ is an n-ary function symbol in Σ for some n ≥ 0 and t1, . . . , tn are terms, then
f(t1, . . . , tn) is a term.

By TN = TN (∅), we denote the set of all terms over Σ ∪N without variables, called ground terms.
The equational theory associated with Σ is defined as usual in Dolev-Yao models and is depicted

in Figure 4 on Page 13. The theory induces a congruence relation ≡ on terms, capturing the meaning
of the function symbols in Σ. For instance, the equation in the equational theory which captures
asymmetric decryption is deca(enca(x, pub(y)), y) = x. With this, we have that, for example,
deca(enca(〈r, k′〉, pub(kex.com)), kex.com) ≡ 〈r, k′〉 , i.e., these two terms are equivalent w.r.t. the
equational theory.

For some term t, we use t↓ to refer its normal form, i.e., a term t′ with t′ ≡ t where all function
symbols have been reduced from left to right as far as possible using the equational theory. For
example, for some term t = deca(enca(x, pub(y)), y), we use t↓ to refer to x.

For readability, strings (elements in S) are depicted using a specific font. For example, HTTPReq
and HTTPResp are strings. Further, we use a notation for mappings (dictionaries). For example:

[dictkey1 : value1, dictkey2 : value2] = 〈〈dictkey1, value1〉, 〈dictkey2, value2〉〉

Full definitions of terms and notations can be found in Section 2.1.
In the context of the Web, we define several specific sets of terms: We denote by Doms ⊆ S the

set of domains, e.g., example.com ∈ Doms. By Origins ⊆ Doms× {P, S}, we denote the set of (Web)
origins with the second element of the origin denoting the protocol, i.e., P denoting an (insecure)
HTTP origin and S denoting a (secure) HTTPS origin of the domain (first element of the origin).
For example, the term 〈example.com, S〉 denotes the origin https://example.com. For HTTP(S)
requests, we denote by Methods ⊆ S the set of methods, e.g., GET, POST ∈ Methods.

As already mentioned above, entities in our model communicate via events that contain a message.
The set M of messages (over N ) is defined to be the set of ground terms TN . For example, k ∈ N
and pub(k) are messages, where k typically models a private key and pub(k) the corresponding public
key. For constants a, b, c and the nonce k ∈ N , the message enca(〈a, b, c〉, pub(k)) is interpreted to
be the message 〈a, b, c〉 (the sequence of constants a, b, c) encrypted by the public key pub(k).

While messages can be arbitrary terms, we also define special kinds of messages:
• DNS messages
• HTTP messages,
• HTTPS messages,
• trigger messages, and
• corrupt messages.

While DNS and HTTP(S) messages model their real-world counterparts, trigger messages can be
seen as “dummy messages” that are used to invoke actions in processes that are not taken in direct
response to another message as in our communication model an action of some entity is always
based on the processing of some message. For example, when a trigger message is delivered to
a browser (which incorporates the behavior of a user, see below) and then this browser might
(non-deterministically) follow some link on some Web page (currently opened in this browser).
Corrupt messages are sent by attackers to honest parties in order to corrupt these parties, i.e., an
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honest party becomes a (collaborator of an) attacker. We will discuss corruption in more depth in
Section 1.5 below.

DNS and HTTP(S) messages can be further divided into requests and responses. A response
is associated with a request. To match a response to a request, both kinds of messages contain a
nonce.1 When a request is created by some process, this process freshly chooses this nonce. This
nonce is then also used for the corresponding response message. For example, an HTTP request
is represented as a term r containing the nonce mentioned above (say, n1), an HTTP method, a
domain name, a path, URI parameters, request headers, and a message body. For instance, an
HTTP GET request for the URI http://example.com/show?p=1 is represented as

req := 〈HTTPReq, n1, GET, example.com, /show, 〈〈p, 1〉〉, 〈〉, 〈〉〉

where the body and the list of request headers are empty. A corresponding HTTP response is
represented as

resp := 〈HTTPResp, n1, 200, 〈〉, body〉
where the status code of the response 200 indicates that the request was accepted and processed by
the server, the list of headers is empty, and body is a term containing the requested Web page.

For HTTPS messages, the underlying TLS channel is modeled in an abstract way as follows:
The sender of the request (say, A, typically a browser) chooses a fresh symmetric key k′ (a nonce)
and includes k′ in the request message. The request message is then asymmetrically encrypted with
the public key of the receiver (say, B). Such an HTTPS request for the HTTP request req above is
of the form

enca(〈req , k′〉, pub(kexample.com)).

If kexample.com (the private key for example.com) is only known to B, only B can decrypt this
request message.2 The symmetric key k′ (now only known by A and B) is used by B to encrypt
the response message, which can then later be decrypted by A using k′. Such an HTTPS response
sent from B to A is of the form

encs(resp, k
′).

An event (over IPs and M ) is of the form 〈a, f,m〉 for a, f ∈ IPs and m ∈ M , where a is
interpreted to be the receiver address and f to be the sender address of the event. We denote by E
the set of all events. Events can be compared to IP messages in practice, that carry some payload
(a message) between two entities which are referred to by IP addresses.

For all formal definitions of messages and data formats, we refer the reader to Section 2.2.

1.4 Processes, Systems, and Runs
An (atomic) process takes its current state and an event as input, and then (non-deterministically)
outputs a new state and a sequence of events. We typically require that the events and the state
that an atomic process outputs can be computed (more formally, derived) from the current input
event and state. Such atomic processes are called atomic Dolev-Yao processes (or simply, a DY
process).

An atomic Dolev-Yao process p = (Ip, Zp, Rp, sp0) is defined to have
• a set of associated (IP) addresses Ip,
• a set of (possible) states Zp (⊂ TN ),
• a process relation Rp that defines transitions from an (input) event and a (current) state to a set

of (output) events and a (new) state such that both its output is derivable from its input,3 and
• an initial state sp0 (∈ Zp).
We combine processes to a system P which is a (possibly infinite) set of atomic processes. A

system itself does include state (except for the initial states of the processes). Also, as explained
in the communication model above, processes communicate via events. Further, processes may use
fresh nonces that have not been used before. We capture these aspects in a configuration of a system.
A configuration is a tuple (S,E,N), which contains

1The nonce of an HTTP(S) message models the TCP/TLS connection of the real world. DNS messages are
typically sent as UDP messages in the real world and contain such a nonce by specification.

2In analyses, we typically show that a private key for a domain that is not controlled by an attacker is only known
to its legitimate Web server (B in this example), i.e., the key is initially only known to this server and does not leak
to any other party.

3We typically describe a process relation using pseudo-code. See Algorithm 12 on Page 32 for a simple example.
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• a mapping S from each atomic process p ∈ P to its current state S(p) ∈ Zp,
• an infinite sequence of waiting events E, i.e., E = (e1, e2, . . . ) where ei are events that are about
to be delivered to a process (for i ∈ N), and

• an infinite sequence of (fresh) nonces N = (n1, n2, . . . ).
The sequence of waiting events E contains all events that have been sent by some process (but have
not been delivered yet) and a (possibly infinite) number of trigger messages addressed to each (IP)
address (interleaved by addresses). The sequence of nonces N is used to provide fresh, unique nonces
to what we call a processing step. A processing step describes a transition from one configuration
to a new configuration. In such a processing step, an event is non-deterministically taken from the
sequence of waiting events, a process that is associated with the receiver’s (IP) address of the event is
selected,4 and a new set of events and a new state for this process is (non-deterministically) derived
using this process’ relation. The relation might use nonces but does not assign them immediately.
The nonces are described by placeholders, which are replaced with fresh nonces from the sequence
of nonces by the processing step. We write, for example,

(S,E,N)
ein→p−−−−−→
p→Eout

(S′, E′, N ′)

to denote the processing step from the configuration (S,E,N) to the configuration (S′, E′, N ′) in
which some event ein was delivered to some process p and p has outputted the set of events Eout
(with S and S′ are the states of the processes in the system, E and E′ are pools of waiting events,
and N and N ′ are sequences of unused nonces, i.e., N ′ contains all nonces from N except for the
ones that are “used” in this processing step). We may omit the superscript and/or subscript of the
arrow.

The output configuration of the processing step then contains
• the states of all processes S′ (as a mapping as above), which are the same as in the previous
configuration for each process except for the selected process,

• the sequence of waiting events E′ where the delivered event has been removed and events output
by the process are added, and

• the sequence of nonces N ′ without nonces that are used in this processing step.
A run ρ of a system is a (possibly infinite) sequence of configurations, such that there exists a

processing step between each consecutive configurations.
For readability, given a finite run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) or an infinite run ρ =

((S0, E0, N0), . . . ), we denote by Qi a processing step (Si, Ei, N i) −→ (Si+1, Ei+1, N i+1) in ρ (with
i ≥ 0 and, for finite runs, i < n).

Based on this generic Dolev-Yao style model, we define Web systems. A Web system formalizes
the Web infrastructure and Web applications. It contains a system W consisting of honest and
attacker processes. Honest processes can be Web browsers, Web servers, or DNS servers. Attackers
and (generic) honest processes are described in the next sections below. A Web system further
contains a set of so-called scripts, which we will cover in Section 1.6. For each Web system, we
also define the mapping addr that describes the ownership of (IP) addresses to DY process and the
mapping dom that describes the ownership of domains to DY processes.

For full definitions of processes, systems, and runs, we refer the reader to Section 2.3, for Web
systems to Section 2.11.

1.5 Attackers
Attackers are modeled as processes in the WIM. An attacker is a Dolev-Yao process, which records
all messages it receives and outputs any finite sequence of events that it can possibly derive from its
recorded messages. Hence, an attacker process carries out all attacks any Dolev-Yao process could
possibly perform. We distinguish two types of attackers: Web attackers and network attackers. Both
types are illustrated in Figure 2. Web attackers participate in the network as any other process,
i.e., they can receive events that are addressed to the respective Web attacker process, and they
can send events to arbitrary receivers. A network attacker5 essentially controls the network. The
network attacker can not only do the same actions as a Web attacker but can also receive messages

4If multiple processes are associated with the same (IP) address, one of these processes is selected non-
deterministically.

5Note that one network attacker can subsume any number of network attackers and Web attackers.
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Figure 2: Illustration of different attackers in the WIM.

that are not addressed to it and perform IP spoofing. As the delivery of events is non-deterministic,
all cases of a network attacker intercepting or blocking a message are captured.6

As already mentioned above, attackers can also corrupt other processes, e.g., browsers. If an
honest process receives a corrupt message, it effectively turns into a Web attacker process that is
given the process’ state including secret values, such as credentials (passwords), cookies, etc.7 Note
that in security analyses, we typically require that certain processes do not become corrupted, while
all other parties might be dishonest.

For the formal definition of attacker processes, we refer the reader to Section 2.5. A mechanism
for malicious Web pages opened in a browser is covered below.

1.6 Browsers and Scripts
In the WIM, a browser is a specific kind of DY process that mimics the behavior of a real-world
Web browser. In Section 2.7, we provide the full definition of a browser’s state and relation.

A browser’s state includes (among others) a list of open windows, cookies, and Web storage
(localStorage and sessionStorage). A window inside a browser’s state contains a set of documents
(one being active at any time), modeling the history of documents presented in this window (see
Figure 3 for an illustration). Each document represents one loaded Web page and, again, includes
a list of windows, creating a tree of windows and documents.

Each document contains a script8 and a state of this script (scriptstate). A script is a relation
that models the behavior of one Web page and subsumes all components of this Web page including
all external resources, such as external JavaScript files. Each document and its script behave similar
to processes: Whenever a browser (during a processing step) decides to run a script in a document,
the browser provides the script with its scriptstate (stored in the document) and a limited view on
the browser’s state (based on the document)9 and expects to receive a command in return along with
an updated scriptstate. This way, scripts can navigate or create windows, send XMLHttpRequests
and postMessages, submit forms, set/change cookies and Web storage data, and create iframes.

6Note that an analysis in the WIM typically reasons about all possible runs of a system.
7In our security analyses of SSO protocols, an attacker initially does not have any credentials for any account at

(honest) IdPs. Using corruption, the attacker can gain access to such credentials, modeling that the attacker can use
accounts of (now dishonest) users at an IdP.

8More precisely, a document contains a script identifier which refers to a script relation.
9The view of a script includes a (limited) view on other documents and windows, certain cookies, Web storage

data, and certain user credentials.
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Figure 3: Illustration of the window and document structure inside a browser. The depicted tree
shows an example of the structure of one browser tab. Active documents are highlighted in orange.

Scripts can be either honest, in which case they model the behavior of the modeled application, or
scripts can be dishonest, in which case they can derive any possible output, i.e., any output that is
derivable from the script’s input. We subsume all dishonest scripts in the so-called attacker script
(Ratt). Navigation and security rules ensure that scripts can manipulate only specific aspects of the
browser’s state, according to the relevant Web standards. See Section 1.6.2 below for more details
on scripts.

One browser is thought to be used by one user, who is modeled as part of the browser. User
actions, such as following a link, are modeled as non-deterministic actions of the Web browser and
scripts. User credentials are stored in the initial state of the browser annotated by an origin and
are given to scripts according to the origin under which the script is running.

The browser relation takes care of processing many different types of messages, i.e., trigger
messages, DNS responses, HTTP(S) responses, and corruption messages. As a result, the relation
can then output messages such as DNS and HTTP(S) requests (including XHRs). When handling
HTTP(S) messages, the relation takes care of important HTTP(S) headers, for example, cookie,
location, strict transport security (STS), and origin headers.

Before we describe the handling of each of these messages in detail, we will first give a description
of the dispatching mechanism for HTTP(S) requests, which is one of the browser’s core functionality
and spread across multiple processing steps.

1.6.1 Dispatchment of HTTP(S) Requests

If a browser wants to send out some HTTP(S) request (either as a result of a script, a URL bar
action, or a reload), the browser prepares the (term of the) HTTP(S) request. Before sending
this HTTP(S) request out, the browser first performs a DNS lookup for the domain to which the
request is addressed to (recall that in the network model, all messages need to be addressed to some
(IP) address, which is not a domain). For this DNS lookup, the browser creates an event that is
addressed to some DNS server and that contains a DNS request message for the domain. The DNS
server is determined by the browser’s state, i.e., the browser is configured to send DNS requests to
some (IP) address. The browser assigns the DNS request a fresh nonce as its message id. In the
browser’s state (namely in a subterm called pendingDNS ), the browser records that it expects a
DNS response that bears this message id. Further, along with this message id, the browser stores
the HTTP(S) request that is to be sent out as well as a term reference that will be used to process
the HTTP(S) response to this HTTP(S) request. The reference can be of two different kinds: (1)
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If the HTTP(S) request is an XHR (caused by a script), then the reference contains an identifier
for the script’s document as well as some term determined by the script (the script will later use
this term to match the response to the request), or (2) in any other case, the reference contains an
identifier for the window that will consume the HTTP(S) response, i.e., that will load the response’s
body as a new document. Finally, the browser outputs the event containing the DNS request and
its modified state.

When the browser concludes the DNS lookup, i.e., when the browser receives a matching DNS
response, it sends out the actual HTTP(S) request. At the same time, the browser moves the
corresponding entry in the browser’s state from the subterm pendingDNS to a subterm called
pendingRequests. Entries in this subterm are used to match the corresponding HTTP(S) response
when it is received by the browser in a later processing step (see also Section 1.6.3 below).

In the case of HTTPS messages, the browser further takes care of encrypting the request. To
this end, the browser looks up the public key of the receiving domain and chooses a fresh nonce
as the (symmetric) key for the response (see also our explanation of HTTPS in Section 1.3 above).
The nonce is stored along with the reference explained above.

Finally, if the browser receives a matching HTTP(S) response, it removes the corresponding
entry from pendingRequests and processes the content of the message (see Section 1.6.4 below for
more details).

1.6.2 Handling of Trigger Messages

A browser, at any time, can receive a trigger message upon which the browser non-deterministically
chooses one of the following actions:
• Running a script in some document,
• mimic a user entering a URL in the location bar,
• reload a window, or
• navigate a window forward or backward.

We will describe each of these action in more detail below.

Running a script in some document The browser non-deterministically selects a window and
runs the script of the document contained within this window. As already mentioned above, the
script subsumes the behavior of (a) a real-world HTML document that contains JavaScript and (b)
user interaction with this document. Similar to process relations, a script is also non-deterministic
and can use nonces by providing placeholders that will be filled with nonces by the process transition.
The script relation maps from
• a limited view on the browser’s window structure based on the document,
• an identifier of the current document in that window structure,
• the script’s current scriptstate, a term that is stored in the document and that is used to store
data of the script between different runs of that script (i.e., to keep state),

• a sequence of script inputs, a term that is stored in the document and that is used to store
XMLHttpRequest responses and postMessages for this document,

• a sequence of cookies for the document’s domain (which are not marked as HTTPonly),
• a dictionary containing the localStorage of the document’s origin within the browser’s state,
• a dictionary containing the sessionStorage of the document’s origin within the current window
tree,

• a sequence of ids of the browser’s user, and
• a sequence of secrets (passwords) of the document’s origin within the browser’s state.10
to
• a new scriptstate that will be stored in the document,
• a new set of cookies for the current domain,
• a new dictionary for the localStorage as above,
• a new dictionary for the sessionStorage as above, and
• a command.
Commands issued by a script can be:
• HREF: The script outputs a URL and a window reference. This command models the user clicking
on a link or a JavaScript navigating some window.

10Note that we model a user who is at least cautious about at which origin she enters passwords.
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• IFRAME: The script outputs a URL and a window reference. This command models the script
creating an iframe in the indicated window.

• FORM: The script outputs a URL, an HTTP method (GET or POST), form data, and a window
reference. This models a user (or the JavaScript itself) filling out a form and submitting this
form.

• SETSCRIPT: The script outputs a window reference and a script identifier. This command models
the script replacing the content of the document of the indicated window.

• SETSCRIPTSTATE: The script outputs a window reference and a (second) scriptstate. This
command models the script changing variables of JavaScript running in the document of the
indicated window.

• XMLHTTPREQUEST: The script outputs a URL, an HTTP method, a term for the body of the
HTTP request, and some term that will be used as a reference to match the response to this
request at a later point in time. The response to an XMLHttpRequest will be later added to
the script inputs of the current document.

• BACK, FORWARD, or CLOSE: The script outputs a window reference. This command models the
script navigating the indicated window backward or forward, or closing the window. The
navigation over the history of a window changes a flag that marks the currently active document
in the window’s history.

• POSTMESSAGE: The script outputs a window reference, a message term, and an origin. This
command models the script sending a postMessage to the indicated window. (The origin is used
to restrict the delivery of this message to documents of this origin.) The postMessage will be
added to the active document’s script inputs in the indicated window.
A browser immediately processes the command output by the script (within the same processing

step). For most commands, certain restrictions apply. For example, a script may only instruct the
browser to replace a script by the SETSCRIPT command if the target document is of the same
origin as the current document. A browser ignores invalid or forbidden commands.

Some commands, however, require interaction with the network. The browser relation then
prepares the HTTP request, outputs the corresponding DNS request and stores the HTTP request
along with some other metadata (e.g., which document/window, XMLHttpRequest reference, ...)
to later continue processing the command when the DNS response is delivered.

Mimic a user entering a URL in the location bar The browser non-deterministically de-
cides whether it creates a new (top-level) window. If it does not create a new window, it non-
deterministically selects some existing top-level window. The browser also non-deterministically
chooses a URL (that does not contain any nonces and hence no secrets). For the selected (new or
existing) window, the browser behaves as if an (imaginary) script of this window (more precisely of
the document within that window, assuming such a document exists) issued the HREF command for
the chosen URL and a reference for this window.

Reload a window The browser non-deterministically selects some window and navigates this
window to its current document’s URL similar to the HREF command as described above. This
choice models a user’s click on the reload button in her browser’s navigation bar or of the context
menu of some window (which might be an iframe).

Navigate a window forward or backward The browser non-deterministically selects some
window and then behaves similar to the BACK and FORWARD commands as described above. This
mimics a user’s click on the backward or forward button in her browser’s navigation bar or the
context menu of some window (which again might be an iframe).

1.6.3 Handling of DNS Responses

When the browser receives an event containing a DNS response, it looks up in its state whether it
expects such a response. If the browser does not find an entry in pendingDNS, it ignores the DNS
response. If the browser finds an entry, the browser considers the DNS lookup to be finished and
removes this entry from pendingDNS. Now the actual HTTP request will be sent out. The browser
checks whether the HTTP request is to be sent to an HTTPS URL, i.e., the browser determines
whether the original message needs to be encrypted. As mentioned above, the browser chooses a
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fresh nonce that will be used as a symmetric key to encrypt the HTTP response later and encrypts
the HTTP request along with this nonce asymmetrically with the public key of the domain (taken
from the browser’s state). The browser now takes this encrypted term11 or the plain HTTP request
(depending on whether the URL is HTTPS or not) as the actual message and creates a new event
with this message that is addressed to the (IP) address contained in the DNS response. Further,
the browser creates a new entry in its state in the subterm pendingRequests. This entry essentially
contains the same information as the former entry in pendingDNS (HTTP request, reference) plus
the (IP) address and (in the case of HTTPS) the nonce that will be used as the symmetric key to
encrypt the response. Finally, the browser outputs the event containing the HTTP request as well
as its modified state.

1.6.4 Handling of HTTP(S) Responses

When the browser receives an HTTP(S) response, it uses the subterm pendingRequests in its state to
look up whether it expects such a response. If it does not expect such an event, the browser ignores
it. Otherwise, the browser finds an entry in this subterm that contains all necessary information to
process this response (including a symmetric key to decrypt the response in the case of HTTPS).
Similar to DNS responses, the browser removes this entry from pendingRequests. The browser now
checks whether the HTTP(S) response contains a redirect (i.e., whether the response contains a
redirect status code) and continues as described below.

The HTTP response does not contain a redirect As above, when the browser created the
corresponding request, the browser again has to distinguish two cases:
• The response is for an XMLHttpRequest. In this case, the browser uses the reference term
contained in the entry in pendingRequests to retrieve the document’s identifier and the script’s
reference term that was used when a script instructed the browser to send out the request. The
browser looks up the document in its window structure and appends the script’s reference along
with the body and selected headers of the HTTP response to the list of script inputs. The script
inputs can be used by the script running within this document when it is triggered in a later
processing step.

• The response is for any other kind of request. In this case, the browser expects the HTTP
response’s body to contain a script identifier and an initial state for this script. The browser
creates a new document with this information. This document is then appended to the history
of the window identified by the window identifier contained in the entry in pendingRequests.
This document is also marked as being the active document of this window.

The HTTP response contains a redirect In this case, the browser follows the redirect except
if the corresponding HTTP request was caused by an XMLHttpRequest (the browser knows this
from the reference term of the entry that it took from pendingRequests). Following a redirect means
that the browser behaves similar to sending the HTTP request in the first place: The browser
creates an event with a DNS request for the domain of the URL it is redirected to and creates an
entry in pendingDNS that uses the same reference term as for the first HTTP request (this term
is contained in the entry the browser took from pendingRequests. Depending on the type of the
redirect (the WIM implements the redirect codes 303 and 307, which subsume the behavior of all
kinds of redirect codes), the request’s body is dropped.12

1.6.5 Corruption

A browser can also become corrupted as explained above. We model two types of corruption of
browsers, namely full corruption and close-corruption, both of which are triggered by special network
messages in the WIM. In the real world, an attacker can exploit buffer overflows in Web browsers,
compromise operating systems (e.g., using Trojan horses), and physically take control over shared
internet terminals.

11Note that we only consider symbolic encryption in the WIM.
12If the HTTP request was a POST request, the request might contain request parameters in its body. In the

case of a 307 redirect, the new request remains the same as the old request except for the URL it is directed to and
the Origin HTTP header. In the case of a 303 redirect, the request is changed to a GET request, and the body is
removed.
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Full corruption models an attacker that gained full control over a Web browser and its user.
Besides modeling a compromised system, full corruption can also serve as a vehicle for the attacker
to participate in a protocol using secrets of honest browsers (think of the attacker “recruiting”
collaborators).

Close-corruption models a browser that is taken over by the attacker after a user finished her
browsing session, i.e., after closing all windows of the browser. This form of corruption is relevant
in situations where one browser can be used by many people, e.g., in an Internet café or in a hotel
lobby. Information left in the browser state after closing the browser could be misused by malicious
users.

1.7 Web Servers
Web servers are application-specific processes. The primary function of a Web server is to respond
to HTTP(S) requests (with HTTP(S) responses). A Web server might also send out HTTP requests
on its own (e.g., invoked by a trigger message) and process responses to its requests.

As Web servers model application-specific behavior, they need to be defined depending on the
respective application. To ease the definition of the behavior of Web servers, the WIM provides a
generic server template in Section 2.12 on Page 32. This template provides basic functionality to
handle incoming HTTPS requests as well as sending out HTTPS requests. To model application
logic in this framework, several “dummy” functions can be replaced with application specific behavior
(i.e., pseudo code).

Note that a Web server can typically also become corrupted as explained above.

1.8 DNS Servers
DNS servers respond to DNS requests, which ask for the IP address of some domain. The DNS
server looks up this IP address and responds with a DNS response. Here, we consider a flat DNS
model in which DNS queries are answered directly by one DNS server and always with the same
address for a domain. Hence, DNS servers contain a list of assignments of domain names to IP
addresses in their state and use only their state to look up the result of a DNS query, i.e., they do
not perform further DNS resolving by forwarding the DNS request to another DNS server. A full
(hierarchical) DNS system with recursive DNS resolution, DNS caches, etc. could also be modeled
to cover specific attacks on the DNS system itself.

Here, we only model plain DNS and do not consider recent improvements and extensions such
as DNSSEC [16] and DNS over HTTPS [14], which provide integrity (in the case of DNSSEC)
and confidentiality (in the case of DNS over HTTPS). This is motivated by the fact that these
technologies are not mandatory and — in the worst case — not used at all. Hence, omitting these
techniques is a safe overapproximation. In a system that contains a network attacker, we typically
do not consider honest DNS servers but configure all parties to use the attacker as their DNS server.
In such a system, the attacker is always able to intercept and respond to all DNS messages and
hence, we do not get any guarantees from an honest DNS server. DNS servers might also become
corrupted, giving Web attackers also the ability to interfere with DNS resolution.

1.9 Limitations
Of course, a model cannot reflect all aspects of the real world as a model is always an abstraction.
As such, the WIM also abstracts away some aspects: There are no details of programming languages,
such as JavaScript, or byte-level attacks, such as buffer overflows. Still, the WIM can capture the
outcome of such attacks by using dynamic corruption or the attacker script within the browser.
The WIM also omits user interface details, which might miss user-level attacks such as Clickjacking.
Further, the WIM, as a Dolev-Yao style model, uses an abstract view on cryptography and TLS.
Still, the WIM provides us with a comprehensive view on the logic of interactions between different
entities, or even scripts within a browser, and allows analyses to yield meaningful results for this
abstraction level.
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deca(enca(x, pub(y)), y) = x (1)
decs(encs(x, y), y) = x (2)

checksig(sig(x, y), pub(y)) = > (3)
extractmsg(sig(x, y)) = x (4)

checkmac(mac(x, y), y) = > (5)
extractmsg(mac(x, y)) = x (6)

πi(〈x1, . . . , xn〉) = xi if 1 ≤ i ≤ n (7)
πj(〈x1, . . . , xn〉) = ♦ if j 6∈ {1, . . . , n} (8)

πj(t) = ♦ if t is not a sequence (9)

Figure 4: Equational theory for Σ.

2 Technical Definitions
Here, we provide technical definitions that complete our description of the WIM in Section 1. As
mentioned in the introduction, we follow the descriptions in [6, 7, 9, 10, 11, 12, 13].

2.1 Terms and Notations
Definition 1 (Nonces and Terms). By X = {x0, x1, . . . } we denote a set of variables and by N
we denote an infinite set of constants (nonces) such that Σ, X, and N are pairwise disjoint. For
N ⊆ N , we define the set TN (X) of terms over Σ ∪N ∪X inductively as usual: (1) If t ∈ N ∪X,
then t is a term. (2) If f ∈ Σ is an n-ary function symbol for some n ≥ 0 and t1, . . . , tn are terms,
then f(t1, . . . , tn) is a term. �

By ≡ we denote the congruence relation on TN (X) induced by the theory associated with Σ (see
Figure 4). For example, we have that π1(deca(enca(〈a, b〉, pub(k)), k)) ≡ a.

Definition 2 (Ground Terms, Messages, Placeholders, Protomessages). By TN = TN (∅),
we denote the set of all terms over Σ ∪ N without variables, called ground terms. The set M of
messages (over N ) is defined to be the set of ground terms TN .

We define the set Vprocess = {ν1, ν2, . . . } of variables (called placeholders). The set M ν :=
TN (Vprocess) is called the set of protomessages, i.e., messages that can contain placeholders. �

Example 1. For example, k ∈ N and pub(k) are messages, where k typically models a private key
and pub(k) the corresponding public key. For constants a, b, c and the nonce k ∈ N , the message
enca(〈a, b, c〉, pub(k)) is interpreted to be the message 〈a, b, c〉 (the sequence of constants a, b, c)
encrypted by the public key pub(k).

Definition 3 (Events and Protoevents). An event (over IPs and M ) is a term of the form
〈a, f,m〉, for a, f ∈ IPs and m ∈ M , where a is interpreted to be the receiver address and f is
the sender address. We denote by E the set of all events. Events over IPs and M ν are called
protoevents and are denoted Eν . By 2E〈〉 (or 2Eν〈〉, respectively) we denote the set of all sequences
of (proto)events, including the empty sequence (e.g., 〈〉, 〈〈a, f,m〉, 〈a′, f ′,m′〉, . . . 〉, etc.). �

Definition 4 (Normal Form). Let t be a term. The normal form of t is acquired by reducing the
function symbols from left to right as far as possible using the equational theory shown in Figure 4.
For a term t, we denote its normal form as t↓. �

Definition 5 (Pattern Matching). Let pattern ∈ TN ({∗}) be a term containing the wildcard
(variable ∗). We say that a term t matches pattern iff t can be acquired from pattern by replacing
each occurrence of the wildcard with an arbitrary term (which may be different for each instance of
the wildcard). We write t ∼ pattern. For a sequence of patterns patterns we write t ∼̇ patterns to
denote that t matches at least one pattern in patterns.
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For a term t′ we write t′| pattern to denote the term that is acquired from t′ by removing all
immediate subterms of t′ that do not match pattern. �

Example 2. For example, for a pattern p = 〈>, ∗〉 we have that 〈>, 42〉 ∼ p, 〈⊥, 42〉 6∼ p, and

〈〈⊥,>〉, 〈>, 23〉, 〈a, b〉, 〈>,⊥〉〉| p = 〈〈>, 23〉, 〈>,⊥〉〉 .

Definition 6 (Variable Replacement). Let N ⊆ N , τ ∈ TN ({x1, . . . , xn}), and t1, . . . , tn ∈ TN .
By τ [t1/x1, . . . , tn/xn] we denote the (ground) term obtained from τ by replacing all occurrences

of xi in τ by ti, for all i ∈ {1, . . . , n}. �

Definition 7 (Sequence Notations). For a sequence t = 〈t1, . . . , tn〉 and a set s we use t ⊂〈〉 s to
say that t1, . . . , tn ∈ s. We define x ∈〈〉 t ⇐⇒ ∃i : ti = x . For a term y we write t+〈〉 y to denote
the sequence 〈t1, . . . , tn, y〉. For a sequence r = 〈r1, . . . , rm〉 we write t ∪ r to denote the sequence
〈t1, . . . , tn, r1, . . . , rm〉. We define |t| = n. If t is not a sequence, we set |t| = ♦. For a finite set M
with M = {m1, . . . ,mn} we use 〈M〉 to denote the term of the form 〈m1, . . . ,mn〉. (The order of
the elements does not matter; one is chosen arbitrarily.) �

Definition 8 (Dictionaries). A dictionary over X and Y is a term of the form

〈〈k1, v1〉, . . . , 〈kn, vn〉〉

where k1, . . . , kn ∈ X, v1, . . . , vn ∈ Y . We call every term 〈ki, vi〉, i ∈ {1, . . . , n}, an element of
the dictionary with key ki and value vi. We often write [k1 : v1, . . . , ki : vi, . . . , kn : vn] instead of
〈〈k1, v1〉, . . . , 〈kn, vn〉〉. We denote the set of all dictionaries over X and Y by [X × Y ]. �

We note that the empty dictionary is equivalent to the empty sequence, i.e., [] = 〈〉. Figure 5
shows the short notation for dictionary operations. For a dictionary z = [k1 : v1, k2 : v2, . . . , kn : vn]
we write k ∈ z to say that there exists i such that k = ki. We write z[kj ] to refer to the value vj .
(Note that if a dictionary contains two elements 〈k, v〉 and 〈k, v′〉, then the notations and operations
for dictionaries apply non-deterministically to one of both elements.) If k 6∈ z, we set z[k] := 〈〉.

[k1 : v1, . . . , ki : vi, . . . , kn : vn] [ki] = vi (10)

[k1 : v1, . . . , ki−1 : vi−1, ki : vi, ki+1 : vi+1 . . . , kn : vn]− ki =

[k1 : v1, . . . , ki−1 : vi−1, ki+1 : vi+1 . . . , kn : vn] (11)

Figure 5: Dictionary operators with 1 ≤ i ≤ n.

Given a term t = 〈t1, . . . , tn〉, we can refer to any subterm using a sequence of integers. The
subterm is determined by repeated application of the projection πi for the integers i in the sequence.
We call such a sequence a pointer :

Definition 9 (Pointers). A pointer is a sequence of non-negative integers. We write τ.p for the
application of the pointer p to the term τ . This operator is applied from left to right. For pointers
consisting of a single integer, we may omit the sequence braces for brevity. �

Example 3. For the term τ = 〈a, b, 〈c, d, 〈e, f〉〉〉 and the pointer p = 〈3, 1〉, the subterm of τ at
the position p is c = π1(π3(τ)). Also, τ.3.〈3, 1〉 = τ.3.p = τ.3.3.1 = e.

To improve readability, we try to avoid writing, e.g., o.2 or π2(o) in this document. Instead, we
will use the names of the components of a sequence that is of a defined form as pointers that point
to the corresponding subterms. E.g., if an Origin term is defined as 〈host , protocol〉 and o is an
Origin term, then we can write o.protocol instead of π2(o) or o.2. See also Example 4.

Definition 10 (Concatenation of Sequences). For a sequence a = 〈a1, . . . , ai〉 and a sequence
b = 〈b1, b2, . . . 〉, we define the concatenation as a · b := 〈a1, . . . , ai, b1, b2, . . . 〉.

�
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Definition 11 (Subtracting from Sequences). For a sequence X and a set or sequence Y we
define X \ Y to be the sequence X where for each element in Y , a non-deterministically chosen
occurence of that element in X is removed. �

2.2 Message and Data Formats
We now provide some more details about data and message formats that are needed for the formal
treatment of the web model presented in the following.

2.2.1 URLs

Definition 12. A URL is a term of the form

〈URL, protocol , host , path, parameters, fragment〉

with protocol ∈ {P, S} (for plain (HTTP) and secure (HTTPS)), a domain host ∈ Doms, path ∈ S,
parameters ∈

[
S× TN

]
, and fragment ∈ TN . The set of all valid URLs is URLs. �

The fragment part of a URL can be omitted when writing the URL. Its value is then defined to
be ⊥. We sometimes also write URLhost

path to denote the URL 〈URL, S, host , path, 〈〉,⊥〉.
As mentioned above, for specific terms, such as URLs, we typically use the names of its compo-

nents as pointers (see Definition 9):

Example 4. For the URL u = 〈URL, a, b, c, d〉, u.protocol = a. If, in the algorithms described
later, we say u.path := e then u = 〈URL, a, b, c, e〉 afterwards.

2.2.2 Origins

Definition 13. An origin is a term of the form 〈host , protocol〉 with host ∈ Doms and protocol ∈
{P, S}. We write Origins for the set of all origins. �

Example 5. For example, 〈FOO, S〉 is the HTTPS origin for the domain FOO, while 〈BAR, P〉 is the
HTTP origin for the domain BAR.

2.2.3 Cookies

Definition 14. A cookie is a term of the form 〈name, content〉 where name ∈ TN , and content is
a term of the form 〈value, secure, session, httpOnly〉 where value ∈ TN , secure, session, httpOnly ∈
{>,⊥}. As name is a term, it may also be a sequence consisting of two parts. If the name consists
of two parts, we call the first part of the sequence (i.e., name.1) the prefix of the name. We write
Cookies for the set of all cookies and Cookiesν for the set of all cookies where names and values are
defined over TN (V ). �

If the secure attribute of a cookie is set, the browser will not transfer this cookie over unencrypted
HTTP connections.13 If the session flag is set, this cookie will be deleted as soon as the browser is
closed. The httpOnly attribute controls whether scripts have access to this cookie.

When the __Host prefix (see [3]) of a cookie is set (i.e., name consists of two parts and
name.1 ≡ __Host), the browser accepts the cookie only if the secure attribute is set. As such
cookies are only transferred over secure channels (i.e., with TLS), the cookie cannot be set by a
network attacker. Note that the WIM does not model the domain attribute of the Set-Cookie
header, so cookies in the WIM are always sent to the originating domain and not some subdomain.
Therefore, the WIM models only the __Host prefix, but not the __Secure prefix.

Also note that cookies of the form described here are only contained in HTTP(S) responses. In
HTTP(S) requests, only the components name and value are transferred as a pairing of the form
〈name, value〉.

13Note that secure cookies can be set over unencrypted connections (c.f. RFC 6265).
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2.2.4 HTTP Messages

Definition 15. An HTTP request is a term of the form shown in (12). An HTTP response is a
term of the form shown in (13).

〈HTTPReq,nonce,method , host , path, parameters, headers, body〉 (12)
〈HTTPResp,nonce, status, headers, body〉 (13)

The components are defined as follows:
• nonce ∈ N serves to map each response to the corresponding request.
• method ∈ Methods is one of the HTTP methods.
• host ∈ Doms is the host name in the HOST header of HTTP/1.1.
• path ∈ S indicates the resource path at the server side.
• status ∈ S is the HTTP status code (i.e., a number between 100 and 505, as defined by the
HTTP standard).

• parameters ∈
[
S× TN

]
contains URL parameters.

• headers ∈
[
S× TN

]
contains request/response headers. The dictionary elements are terms of

one of the following forms:
– 〈Origin, o〉 where o is an origin,
– 〈Set-Cookie, c〉 where c is a sequence of cookies,
– 〈Cookie, c〉 where c ∈

[
S× TN

]
(note that in this header, only names and values of cookies

are transferred),
– 〈Location, l〉 where l ∈ URLs,
– 〈Referer, r〉 where r ∈ URLs,
– 〈Strict-Transport-Security,>〉,
– 〈Authorization, 〈username, password〉〉 where username, password ∈ S (this header models

the ‘Basic’ HTTP Authentication Scheme, see [15]),
– 〈ReferrerPolicy, p〉 where p ∈ {noreferrer, origin}.

• body ∈ TN in requests and responses.
We write HTTPRequests/HTTPResponses for the set of all HTTP requests or responses, respectively.

�

Example 6 (HTTP Request and Response).

r :=〈HTTPReq, n1, POST, example.com, /show, 〈〈index, 1〉〉,
[Origin : 〈example.com, S〉], 〈foo, bar〉〉 (14)

s :=〈HTTPResp, n1, 200, 〈〈Set-Cookie, 〈〈SID, 〈n2,⊥,⊥,>〉〉〉〉〉, 〈somescript, x〉〉 (15)

An HTTP POST request for the URL http://example.com/show?index=1 is shown in (14), with
an Origin header and a body that contains 〈foo, bar〉. A possible response is shown in (15), which
contains an httpOnly cookie with name SID and value n2 as well as a string somescript representing
a script that can later be executed in the browser (see Section 2.11) and the scripts initial state x.

Encrypted HTTP Messages For HTTPS, requests are encrypted using the public key of the
server. Such a request contains an (ephemeral) symmetric key chosen by the client that issued the
request. The server is supposed to encrypt the response using the symmetric key.

Definition 16. An encrypted HTTP request is of the form enca(〈m, k′〉, k), where k ∈ terms,
k′ ∈ N , and m ∈ HTTPRequests. The corresponding encrypted HTTP response would be of the
form encs(m

′, k′), where m′ ∈ HTTPResponses. We call the sets of all encrypted HTTP requests
and responses HTTPSRequests or HTTPSResponses, respectively. �

We say that an HTTP(S) response matches or corresponds to an HTTP(S) request if both terms
contain the same nonce.

Example 7.

enca(〈r, k′〉, pub(kexample.com)) (16)
encs(s, k

′) (17)

16
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The term (16) shows an encrypted request (with r as in (14)). It is encrypted using the public key
pub(kexample.com). The term (17) is a response (with s as in (15)). It is encrypted symmetrically
using the (symmetric) key k′ that was sent in the request (16).

2.2.5 DNS Messages

Definition 17. A DNS request is a term of the form 〈DNSResolve, domain,nonce〉 where domain
∈ Doms, nonce ∈ N . We call the set of all DNS requests DNSRequests. �

Definition 18. A DNS response is a term of the form 〈DNSResolved, domain, result ,nonce〉 with
domain ∈ Doms, result ∈ IPs, nonce ∈ N . We call the set of all DNS responses DNSResponses. �

DNS servers are supposed to include the nonce they received in a DNS request in the DNS
response that they send back so that the party which issued the request can match it with the
request.

2.3 Atomic Processes, Systems and Runs
Entities that take part in a network are modeled as atomic processes. An atomic process takes a
term that describes its current state and an event as input, and then (non-deterministically) outputs
a new state and a sequence of events.

Definition 19 (Generic Atomic Processes and Systems). A (generic) atomic process is a
tuple

p = (Ip, Zp, Rp, sp0)

where Ip ⊆ IPs, Zp ⊆ TN is a set of states, Rp ⊆ (E ×Zp)× (2Eν〈〉× TN (Vprocess)) (input event and
old state map to sequence of output events and new state), and sp0 ∈ Zp is the initial state of p. For
any new state s and any sequence of nonces (η1, η2, . . . ) we demand that s[η1/ν1, η2/ν2, . . . ] ∈ Zp.
A system P is a (possibly infinite) set of atomic processes. �

Definition 20 (Configurations). A configuration of a system P is a tuple (S,E,N) where the
state of the system S maps every atomic process p ∈ P to its current state S(p) ∈ Zp, the sequence
of waiting events E is an infinite sequence14 (e1, e2, . . . ) of events waiting to be delivered, and N is
an infinite sequence of nonces (n1, n2, . . . ). �

Definition 21 (Processing Steps). A processing step of the system P is of the form

(S,E,N)
ein→p−−−−−→
p→Eout

(S′, E′, N ′)

where

1. (S,E,N) and (S′, E′, N ′) are configurations of P ,

2. ein = 〈a, f,m〉 ∈ E is an event,

3. p ∈ P is a process,

4. Eout is a sequence (term) of events

such that there exists

1. a sequence (term) Eνout ⊆ 2Eν〈〉 of protoevents,

2. a term sν ∈ TN (Vprocess),

3. a sequence (v1, v2, . . . , vi) of all placeholders appearing in Eνout (ordered lexicographically),

4. a sequence Nν = (η1, η2, . . . , ηi) of the first i elements in N

with
14Here: Not in the sense of terms as defined earlier.
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1. ((ein, S(p)), (Eνout, s
ν)) ∈ Rp and a ∈ Ip,

2. Eout = Eνout[η1/v1, . . . , ηi/vi],

3. S′(p) = sν [η1/v1, . . . , ηi/vi] and S′(p′) = S(p′) for all p′ 6= p,

4. E′ = Eout · (E \ {ein}),

5. N ′ = N \Nν .

We may omit the superscript and/or subscript of the arrow. �

Intuitively, for a processing step, we select one of the processes in P , and call it with one of the
events in the list of waiting events E. In its output (new state and output events), we replace any
occurences of placeholders νx by “fresh” nonces from N (which we then remove from N). The output
events are then prepended to the list of waiting events, and the state of the process is reflected in
the new configuration.

Definition 22 (Runs). Let P be a system, E0 be sequence of events, and N0 be a sequence of
nonces. A run ρ of a system P initiated by E0 with nonces N0 is a finite sequence of configurations
((S0, E0, N0), . . . , (Sn, En, Nn)) or an infinite sequence of configurations ((S0, E0, N0), . . . ) such
that S0(p) = sp0 for all p ∈ P and (Si, Ei, N i) −→ (Si+1, Ei+1, N i+1) for all 0 ≤ i < n (finite run) or
for all i ≥ 0 (infinite run).

We denote the state Sn(p) of a process p at the end of a finite run ρ by ρ(p). �

Usually, we will initiate runs with a set E0 containing infinite trigger events of the form
〈a, a, TRIGGER〉 for each a ∈ IPs, interleaved by address.

2.4 Atomic Dolev-Yao Processes
We next define atomic Dolev-Yao processes, for which we require that the messages and states that
they output can be computed (more formally, derived) from the current input event and state. For
this purpose, we first define what it means to derive a message from given messages.

Definition 23 (Deriving Terms). Let M be a set of ground terms. We say that a term m
can be derived from M with placeholders V if there exist n ≥ 0, m1, . . . ,mn ∈ M , and τ ∈
T∅({x1, . . . , xn} ∪ V ) such that m ≡ τ [m1/x1, . . . ,mn/xn]. We denote by dV (M) the set of all
messages that can be derived from M with variables V . �

For example, the term a can be derived from the set of terms {enca(〈a, b, c〉, pub(k)), k}, i.e.,
a ∈ d∅({enca(〈a, b, c〉, pub(k)), k}).

A (Dolev-Yao) process consists of a set of addresses the process listens to, a set of states (terms),
an initial state, and a relation that takes an event and a state as input and (non-deterministically)
returns a new state and a sequence of events. The relation models a computation step of the process.
It is required that the output can be derived from the input event and the state.

Definition 24 (Atomic Dolev-Yao Process). An atomic Dolev-Yao process (or simply, a DY
process) is a tuple p = (Ip, Zp, Rp, sp0) such that p is an atomic process and for all events e ∈ E ,
sequences of protoevents E, s ∈ TN , s′ ∈ TN (Vprocess), with ((e, s), (E, s′)) ∈ Rp it holds true that
E, s′ ∈ dVprocess({e, s}). �

2.5 Attackers
The so-called attacker process is a Dolev-Yao process which records all messages it receives and
outputs any finite sequence of events it can possibly derive from its recorded messages. Hence, an
attacker process carries out all attacks any Dolev-Yao process could possibly perform. Attackers
can corrupt other parties (using corrupt messages).
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Definition 25 (Atomic Attacker Process). An (atomic) attacker process for a set of sender
addresses A ⊆ IPs is an atomic DY process p = (I, Z,R, s0) such that for all events e, and s ∈ TN we
have that ((e, s), (E, s′)) ∈ R iff s′ = 〈e, E, s〉 and E = 〈〈a1, f1,m1〉, . . . , 〈an, fn,mn〉〉 with n ∈ N,
a1, . . . , an ∈ IPs, f1, . . . , fn ∈ A, m1, . . . ,mn ∈ dVprocess({e, s}). �

Note that in a web system, we distinguish between two kinds of attacker processes: web attackers
and network attackers. Both kinds match the definition above, but differ in the set of assigned
addresses in the context of a web system. While for web attackers, the set of addresses Ip is disjoint
from other web attackers and honest processes, i.e., web attackers participate in the network as any
other party, the set of addresses Ip of a network attacker is not restricted. Hence, a network attacker
can intercept events addressed to any party as well as spoof all addresses. Note that one network
attacker subsumes any number of web attackers as well as any number of network attackers.

2.6 Notations for Functions and Algorithms
When describing algorithms, we use the following notations:

2.6.1 Non-deterministic choosing and iteration

The notation let n← N is used to describe that n is chosen non-deterministically from the set N .
We write for each s ∈M do to denote that the following commands (until end for) are repeated
for every element inM , where the variable s is the current element. The order in which the elements
are processed is chosen non-deterministically. We write, for example,

let x, y such that 〈Constant, x, y〉 ≡ t if possible; otherwise doSomethingElse
for some variables x, y, a string Constant, and some term t to express that x := π2(t), and y := π3(t)
if Constant ≡ π1(t) and if |〈Constant, x, y〉| = |t|, and that otherwise x and y are not set and
doSomethingElse is executed.

2.6.2 Function calls

When calling functions that do not return anything, we write
call FUNCTION_NAME(x, y)

to describe that a function FUNCTION_NAME is called with two variables x and y as parameters.
If that function executes the command stop E, s′, the processing step terminates, where E is the
sequence of events output by the associated process and s′ is its new state. If that function does
not terminate with a stop, the control flow returns to the calling function at the next line after the
call.

When calling a function that has a return value, we omit the call and directly write
let z := FUNCTION_NAME(x, y)

to assign the return value to a variable z after the function returns. Note that the semantics for
execution of stop within such functions is the same as for functions without a return value.

2.6.3 Stop without output

We write stop (without further parameters) to denote that there is no output and no change in the
state.

2.6.4 Placeholders

In several places throughout the algorithms presented next we use placeholders to generate “fresh”
nonces as described in our communication model (see Definition 1). Table 1 shows a list of all
placeholders used.

2.6.5 Abbreviations for URLs and Origins

We sometimes use an abbreviation for URLs. We write URLdpath to describe the following URL
term: 〈URL, S, d, path, 〈〉〉. If the domain d belongs to some distinguished process P and it is the only
domain associated to this process, we may also write URLPpath . For a (secure) origin 〈d, S〉 of some
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Placeholder Usage
ν1 Algorithm 9, new window nonces
ν2 Algorithm 9, new HTTP request nonce
ν3 Algorithm 9, lookup key for pending HTTP requests entry
ν4 Algorithm 7, new HTTP request nonce (multiple lines)
ν5 Algorithm 7, new subwindow nonce
ν6 Algorithm 8, new HTTP request nonce
ν7 Algorithm 8, new document nonce
ν8 Algorithm 4, lookup key for pending DNS entry
ν9 Algorithm 1, new window nonce
ν10, . . . Algorithm 7, replacement for placeholders in script output

Table 1: List of placeholders used in browser algorithms.

domain d, we also write origind. Again, if the domain d belongs to some distinguished process P
and d is the only domain associated to this process, we may write originP.

2.7 Browsers
Following the informal description of the browser model in Section 1, we now present the formal
model of browsers.

2.7.1 Scripts

Recall that a script models JavaScript running in a browser. Scripts are defined similarly to Dolev-
Yao processes. When triggered by a browser, a script is provided with state information. The script
then outputs a term representing a new internal state and a command to be interpreted by the
browser (see also the specification of browsers below).

Definition 26 (Placeholders for Scripts). By Vscript = {λ1, . . . } we denote an infinite set of
variables used in scripts. �

Definition 27 (Scripts). A script is a relation R ⊆ TN × TN (Vscript) such that for all s ∈ TN ,
s′ ∈ TN (Vscript) with (s, s′) ∈ R it follows that s′ ∈ dVscript(s). �

A script is called by the browser which provides it with state information (such as the script’s
last scriptstate and limited information about the browser’s state) s. The script then outputs
a term s′, which represents the new scriptstate and some command which is interpreted by the
browser. The term s′ may contain variables λ1, . . . which the browser will replace by (otherwise
unused) placeholders ν1, . . . which will be replaced by nonces once the browser DY process finishes
(effectively providing the script with a way to get “fresh” nonces).

Similarly to an attacker process, the so-called attacker script outputs everything that is derivable
from the input.

Definition 28 (Attacker Script). The attacker script Ratt outputs everything that is derivable
from the input, i.e., Ratt = {(s, s′) | s ∈ TN , s

′ ∈ dVscript(s)}. �

2.7.2 Web Browser State

Before we can define the state of a web browser, we first have to define windows and documents.

Definition 29. A window is a term of the form w = 〈nonce, documents, opener〉 with nonce ∈ N ,
documents ⊂〈〉 Documents (defined below), opener ∈ N ∪ {⊥} where d.active = > for exactly one
d ∈〈〉 documents if documents is not empty (we then call d the active document of w). We write
Windows for the set of all windows. We write w.activedocument to denote the active document
inside window w if it exists and 〈〉 else. �

20



We will refer to the window nonce as (window) reference.
The documents contained in a window term to the left of the active document are the previously

viewed documents (available to the user via the “back” button) and the documents in the window
term to the right of the currently active document are documents available via the “forward” button.

A window a may have opened a top-level window b (i.e., a window term which is not a subterm
of a document term). In this case, the opener part of the term b is the nonce of a, i.e., b.opener =
a.nonce.

Definition 30. A document d is a term of the form

〈nonce, location, headers, referrer , script , scriptstate, scriptinputs, subwindows, active〉

where nonce ∈ N , location ∈ URLs, headers ∈
[
S× TN

]
, referrer ∈ URLs ∪ {⊥}, script ∈ TN ,

scriptstate ∈ TN , scriptinputs ∈ TN , subwindows ⊂〈〉 Windows, active ∈ {>,⊥}. A limited doc-
ument is a term of the form 〈nonce, subwindows〉 with nonce, subwindows as above. A window
w ∈〈〉 subwindows is called a subwindow (of d). We write Documents for the set of all documents.
For a document term d we write d.origin to denote the origin of the document, i.e., the term
〈d.location.host, d.location.protocol〉 ∈ Origins. �

We will refer to the document nonce as (document) reference.

Definition 31. For two window terms w and w′ we write

w
childof−−−−→ w′

if w ∈〈〉 w′.activedocument.subwindows. We write childof+−−−−−→ for the transitive closure and we write
childof∗−−−−−→ for the reflexive transitive closure. �

In the web browser state, HTTP(S) messages are tracked using references, where we distinguish
between references for XMLHttpRequests and references for normal HTTP(S) requests.

Definition 32. A reference for a normal HTTP(S) request is a sequence of the form 〈REQ,nonce〉,
where nonce is a window reference. A reference for a XMLHttpRequest is a sequence of the form
〈XHR,nonce, xhrreference〉, where nonce is a document reference and xhrreference is some nonce
that was chosen by the script that initiated the request. �

We can now define the set of states of web browsers. Note that we use the dictionary notation
that we introduced in Definition 8.

Definition 33. The set of states Zwebbrowser of a web browser atomic Dolev-Yao process consists
of the terms of the form

〈windows, ids, secrets, cookies, localStorage, sessionStorage, keyMapping ,

sts,DNSaddress, pendingDNS , pendingRequests, isCorrupted〉

with the subterms as follows:
• windows ⊂〈〉 Windows contains a list of window terms (modeling top-level windows, or browser
tabs) which contain documents, which in turn can contain further window terms (iframes).

• ids ⊂〈〉 TN is a list of identities that are owned by this browser (i.e., belong to the user of the
browser).

• secrets ∈
[
Origins× TN

]
contains a list of secrets that are associated with certain origins (i.e.,

passwords of the user of the browser at certain websites). Note that this structure allows to
have a single secret under an origin or a list of secrets under an origin.

• cookies is a dictionary over Doms and sequences of Cookies modeling cookies that are stored for
specific domains.

• localStorage ∈
[
Origins× TN

]
stores the data saved by scripts using the localStorage API (sepa-

rated by origins).
• sessionStorage ∈

[
OR × TN

]
for OR := {〈o, r〉| o ∈ Origins, r ∈ N } similar to localStorage, but

the data in sessionStorage is additionally separated by top-level windows.
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• keyMapping ∈
[
Doms× TN

]
maps domains to TLS encryption keys.

• sts ⊂〈〉 Doms stores the list of domains that the browser only accesses via TLS (strict transport
security).

• DNSaddress ∈ IPs defines the IP address of the DNS server.
• pendingDNS ∈

[
N × TN

]
contains one pairing per unanswered DNS query of the form 〈reference,

request , url〉. In these pairings, reference is an HTTP(S) request reference (as above), request
contains the HTTP(S) message that awaits DNS resolution, and url contains the URL of said
HTTP request. The pairings in pendingDNS are indexed by the DNS request/response nonce.

• pendingRequests ∈ TN contains pairings of the form 〈reference, request , url , key , f〉 with reference,
request , and url as in pendingDNS , key is the symmetric encryption key if HTTPS is used or ⊥
otherwise, and f is the IP address of the server to which the request was sent.

• isCorrupted ∈ {⊥, FULLCORRUPT, CLOSECORRUPT} specifies the corruption level of the browser.
In corrupted browsers, certain subterms are used in different ways (e.g., pendingRequests is used to
store all observed messages). �

2.7.3 Web Browser Relation

We will now define the relation Rwebbrowser of a standard HTTP browser. We first introduce some
notations and then describe the functions that are used for defining the browser main algorithm.
We then define the browser relation.

Helper Functions In the following description of the web browser relation Rwebbrowser we use
the helper functions Subwindows, Docs, Clean, CookieMerge, AddCookie, and NavigableWindows.

Subwindows and Docs. Given a browser state s, Subwindows(s) denotes the set of all
pointers15 to windows in the window list s.windows and (recursively) the subwindows of their active
documents. We exclude subwindows of inactive documents and their subwindows. With Docs(s) we
denote the set of pointers to all active documents in the set of windows referenced by Subwindows(s).

Definition 34. For a browser state s we denote by Subwindows(s) the minimal set of pointers that
satisfies the following conditions: (1) For all windows w ∈〈〉 s.windows there is a p ∈ Subwindows(s)
such that s.p = w. (2) For all p ∈ Subwindows(s), the active document d of the window s.p and
every subwindow w of d there is a pointer p′ ∈ Subwindows(s) such that s.p′ = w.

Given a browser state s, the set Docs(s) of pointers to active documents is the minimal set such
that for every p ∈ Subwindows(s) with s.p.activedocument 6≡ 〈〉, there exists a pointer p′ ∈ Docs(s)
with s.p′ = s.p.activedocument. �

By Subwindows+(s) and Docs+(s) we denote the respective sets that also include the inactive
documents and their subwindows.

Clean. The function Clean will be used to determine which information about windows and
documents the script running in the document d has access to.

Definition 35. Let s be a browser state and d a document. By Clean(s, d) we denote the term that
equals s.windows but with (1) all inactive documents removed (including their subwindows etc.),
(2) all subterms that represent non-same-origin documents w.r.t. d replaced by a limited document
d′ with the same nonce and the same subwindow list, and (3) the values of the subterms headers
for all documents set to 〈〉. (Note that non-same-origin documents on all levels are replaced by their
corresponding limited document.) �

CookieMerge. The function CookieMerge merges two sequences of cookies together: When
used in the browser, oldcookies is the sequence of existing cookies for some origin, newcookies is a
sequence of new cookies that was output by some script. The sequences are merged into a set of
cookies using an algorithm that is based on the Storage Mechanism algorithm described in RFC6265.

15Recall the definition of a pointer in Definition 9.
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Algorithm 1 Web Browser Model: Determine window for navigation.
1: function GETNAVIGABLEWINDOW(w , window , noreferrer , s′)
2: if window ≡ _BLANK then → Open a new window when _BLANK is used
3: if noreferrer ≡ > then
4: let w′ := 〈ν9, 〈〉,⊥〉
5: else
6: let w′ := 〈ν9, 〈〉, s′.w .nonce〉
7: let s′.windows := s′.windows +〈〉 w′

↪→ and let w ′ be a pointer to this new element in s′

8: return w ′

9: let w ′ ← NavigableWindows(w , s′) such that s′.w ′.nonce ≡ window
↪→ if possible; otherwise return w

10: return w ′

Definition 36. For a sequence of cookies (with pairwise different names) oldcookies, a sequence
of cookies newcookies, and a string protocol ∈ {P, S}, the set CookieMerge(oldcookies,newcookies,
protocol) is defined by the following algorithm: From newcookies remove all cookies c that have
c.content.httpOnly ≡ > or where (c.name.1 ≡ __Host) ∧ ((protocol ≡ P) ∨ (c.secure ≡ ⊥)). For
any c, c′ ∈〈〉 newcookies, c.name ≡ c′.name, remove the cookie that appears left of the other
in newcookies. Let m be the set of cookies that have a name that either appears in oldcookies
or in newcookies, but not in both. For all pairs of cookies (cold, cnew) with cold ∈〈〉 oldcookies,
cnew ∈〈〉 newcookies, cold.name ≡ cnew.name, add cnew to m if cold.content.httpOnly ≡ ⊥ and add
cold to m otherwise. The result of CookieMerge(oldcookies,newcookies, protocol) is m. �

AddCookie. The function AddCookie adds a cookie c received in an HTTP response to the
sequence of cookies contained in the sequence oldcookies. It is again based on the algorithm described
in RFC6265 but simplified for the use in the browser model.

Definition 37. For a sequence of cookies (with pairwise different names) oldcookies, a cookie c, and
a string protocol ∈ {P, S} (denoting whether the HTTP response was received from an insecure or a
secure origin), the sequence AddCookie(oldcookies, c, protocol) is defined by the following algorithm:
Let m := oldcookies. If (c.name.1 ≡ __Host) ∧ ¬((protocol ≡ S) ∧ (c.secure ≡ >)), then return m,
else: Remove any c′ from m that has c.name ≡ c′.name. Append c to m and return m. �

NavigableWindows. The function NavigableWindows returns a set of windows that a docu-
ment is allowed to navigate. We closely follow [2], Section 5.1.4 for this definition.

Definition 38. The set NavigableWindows(w , s′) is the set W ⊆ Subwindows(s′) of pointers to
windows that the active document in w is allowed to navigate. The set W is defined to be the
minimal set such that for every w ′ ∈ Subwindows(s′) the following is true:
• If s′.w ′.activedocument.origin ≡ s′.w .activedocument.origin (i.e., the active documents in
w and w ′ are same-origin), then w ′ ∈W , and

• If s′.w childof∗−−−−−→ s′.w ′ ∧ @w ′′ ∈ Subwindows(s′) with s′.w ′ childof∗−−−−−→ s′.w ′′ (w ′ is a top-level window
and w is an ancestor window of w ′), then w ′ ∈W , and

• If ∃ p ∈ Subwindows(s′) such that s′.w ′ childof+−−−−−→ s′.p
∧ s′.p.activedocument.origin = s′.w .activedocument.origin (w ′ is not a top-level window
but there is an ancestor window p of w ′ with an active document that has the same origin as
the active document in w), then w ′ ∈W , and

• If ∃ p ∈ Subwindows(s′) such that s′.w ′.opener = s′.p.nonce ∧ p ∈W (w ′ is a top-level window—
it has an opener—and w is allowed to navigate the opener window of w ′, p), then w ′ ∈W .

�

Functions
• The function GETNAVIGABLEWINDOW (Algorithm 1) is called by the browser to determine the
window that is actually navigated when a script in the window s′.w provides a window reference
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Algorithm 2 Web Browser Model: Determine same-origin window.
1: function GETWINDOW(w , window , s′)
2: let w ′ ← Subwindows(s′) such that s′.w ′.nonce ≡ window

↪→ if possible; otherwise return w
3: if s′.w ′.activedocument.origin ≡ s′.w .activedocument.origin then
4: return w ′

5: return w

Algorithm 3 Web Browser Model: Cancel pending requests for given window.
1: function CANCELNAV(reference, s′)
2: remove all 〈reference, req , url , key , f 〉 from s′.pendingRequests for any req , url , key , f
3: remove all 〈x, 〈reference,message, url〉〉 from s′.pendingDNS

↪→ for any x , message, url
4: return s′

Algorithm 4 Web Browser Model: Prepare headers, do DNS resolution, save message.
1: function HTTP_SEND(reference, message, url , origin, referrer , referrerPolicy , a, s′)
2: if message.host ∈〈〉 s′.sts then
3: let url .protocol := S

4: let cookies := 〈{〈c.name, c.content.value〉 | c ∈〈〉 s′.cookies [message.host]
↪→ ∧ (c.content.secure ≡ > =⇒ (url .protocol ≡ S))}〉

5: let message.headers[Cookie] := cookies
6: if origin 6≡ ⊥ then
7: let message.headers[Origin] := origin

8: if referrerPolicy ≡ no-referrer then
9: let referrer := ⊥

10: if referrer 6≡ ⊥ then
11: if referrerPolicy ≡ origin then
12: let referrer := 〈URL, referrer .protocol, referrer .host, /, 〈〉,⊥〉

→ Referrer stripped down to origin.
13: let referrer .fragment := ⊥

→ Browsers do not send fragment identifiers in the Referer header.
14: let message.headers[Referer] := referrer

15: let s′.pendingDNS[ν8] := 〈reference,message, url〉
16: stop 〈〈s′.DNSaddress, a, 〈DNSResolve,message.host, ν8〉〉〉, s′

Algorithm 5 Web Browser Model: Navigate a window backward.

1: function NAVBACK(w ′, s′)
2: if ∃ j ∈ N, j > 1 such that s′.w ′.documents.j .active ≡ > then
3: let s′.w ′.documents.j .active := ⊥
4: let s′.w ′.documents.(j − 1).active := >
5: let s′ := CANCELNAV(s′.w ′.nonce, s′)

6: stop 〈〉, s′

Algorithm 6 Web Browser Model: Navigate a window forward.

1: function NAVFORWARD(w ′, s′)
2: if ∃ j ∈ N such that s′.w ′.documents.j .active ≡ >

↪→ ∧ s′.w ′.documents.(j + 1) ∈ Documents then
3: let s′.w ′.documents.j .active := ⊥
4: let s′.w ′.documents.(j + 1).active := >
5: let s′ := CANCELNAV(s′.w ′.nonce, s′)

6: stop 〈〉, s′
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Algorithm 7 Web Browser Model: Execute a script.

1: function RUNSCRIPT(w , d , a, s′)
2: let tree := Clean(s′, s′.d)
3: let cookies := 〈{〈c.name, c.content.value〉|c ∈〈〉 s′.cookies

[
s′.d .origin.host

]
↪→ ∧ c.content.httpOnly ≡ ⊥
↪→ ∧

(
c.content.secure ≡ > =⇒

(
s′.d .origin.protocol ≡ S

))
}〉

4: let tlw ← s′.windows such that tlw is the top-level window containing d
5: let sessionStorage := s′.sessionStorage

[
〈s′.d .origin, tlw .nonce〉

]
6: let localStorage := s′.localStorage

[
s′.d .origin

]
7: let secrets := s′.secrets

[
s′.d .origin

]
8: let R := script−1(s′.d .script) if possible; otherwise stop
9: let in := 〈tree, s′.d .nonce, s′.d .scriptstate, s′.d .scriptinputs, cookies,

↪→ localStorage, sessionStorage, s′.ids, secrets〉
10: let state ′ ← TN (Vprocess), cookies ′ ← Cookiesν , localStorage ′ ← TN (Vprocess),

↪→ sessionStorage ′ ← TN (Vprocess), command ← TN (Vprocess),
↪→ out := 〈state ′, cookies ′, localStorage ′, sessionStorage ′, command〉
↪→ such that out := outλ[ν10/λ1, ν11/λ2, . . . ] with (in, outλ) ∈ R

11: let s′.cookies
[
s′.d .origin.host

]
:=

↪→ 〈CookieMerge(s′.cookies
[
s′.d .origin.host

]
, cookies ′, s′.d .origin.protocol)〉

12: let s′.localStorage
[
s′.d .origin

]
:= localStorage ′

13: let s′.sessionStorage
[
〈s′.d .origin, tlw .nonce〉

]
:= sessionStorage ′

14: let s′.d .scriptstate := state′

15: let referrer := s′.d .location
16: let referrerPolicy := s′.d .headers[ReferrerPolicy]
17: let docorigin := s′.d .origin
18: switch command do
19: case 〈HREF, url , hrefwindow ,noreferrer〉
20: let w ′ := GETNAVIGABLEWINDOW(w , hrefwindow , noreferrer , s′)
21: let reference := 〈REQ, s′.w ′.nonce〉
22: let req := 〈HTTPReq, ν4, GET, url .host, url .path, url .parameters, 〈〉, 〈〉〉
23: if noreferrer ≡ > then
24: let referrerPolicy := noreferrer

25: let s′ := CANCELNAV(reference, s′)
26: call HTTP_SEND(reference, req , url , ⊥, referrer , referrerPolicy , a, s′)
27: case 〈IFRAME, url ,window〉
28: if window ≡ _SELF then
29: let w ′ := w
30: else
31: let w ′ := GETWINDOW(w ,window , s′)

32: let req := 〈HTTPReq, ν4, GET, url .host, url .path, url .parameters, 〈〉, 〈〉〉
33: let w′ := 〈ν5, 〈〉,⊥〉
34: let s′.w ′.activedocument.subwindows := s′.w ′.activedocument.subwindows+〈〉 w′

35: call HTTP_SEND(〈REQ, ν5〉, req , url , ⊥, referrer , referrerPolicy , a, s′)
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36: case 〈FORM, url ,method , data, hrefwindow〉
37: if method 6∈ {GET, POST} then
38: stop
39: let w ′ := GETNAVIGABLEWINDOW(w , hrefwindow , ⊥, s′)
40: let reference := 〈REQ, s′.w ′.nonce〉
41: if method = GET then
42: let body := 〈〉
43: let parameters := data
44: let origin := ⊥
45: else
46: let body := data
47: let parameters := url .parameters
48: let origin := docorigin

49: let req := 〈HTTPReq, ν4,method , url .host, url .path, parameters, 〈〉, body〉
50: let s′ := CANCELNAV(reference, s′)
51: call HTTP_SEND(reference, req , url , origin, referrer , referrerPolicy , a, s′)
52: case 〈SETSCRIPT,window , script〉
53: let w ′ := GETWINDOW(w ,window , s′)
54: let s′.w ′.activedocument.script := script
55: stop 〈〉, s′

56: case 〈SETSCRIPTSTATE,window , scriptstate〉
57: let w ′ := GETWINDOW(w ,window , s′)
58: let s′.w ′.activedocument.scriptstate := scriptstate
59: stop 〈〉, s′

60: case 〈XMLHTTPREQUEST, url ,method , data, xhrreference〉
61: if method ∈ {CONNECT, TRACE, TRACK} ∨ xhrreference 6∈ Vprocess ∪ {⊥} then
62: stop
63: if url .host 6≡ docorigin.host ∨ url .protocol 6≡ docorigin.protocol then
64: stop
65: if method ∈ {GET, HEAD} then
66: let data := 〈〉
67: let origin := ⊥
68: else
69: let origin := docorigin

70: let req := 〈HTTPReq, ν4,method , url .host, url .path, url .parameters, 〈〉, data〉
71: let reference := 〈XHR, s′.d .nonce, xhrreference〉
72: call HTTP_SEND(reference, req , url , origin, referrer , referrerPolicy , a, s′)
73: case 〈BACK,window〉
74: let w ′ := GETNAVIGABLEWINDOW(w , window , ⊥, s′)
75: call NAVBACK(w ′, s′)
76: case 〈FORWARD,window〉
77: let w ′ := GETNAVIGABLEWINDOW(w , window , ⊥, s′)
78: call NAVFORWARD(w ′, s′)
79: case 〈CLOSE,window〉
80: let w ′ := GETNAVIGABLEWINDOW(w , window , ⊥, s′)
81: remove s′.w ′ from the sequence containing it
82: stop 〈〉, s′

83: case 〈POSTMESSAGE,window ,message, origin〉
84: let w ′ ← Subwindows(s′) such that s′.w ′.nonce ≡ window
85: if ∃j ∈ N such that s′.w ′.documents.j .active ≡ >

↪→ ∧ (origin 6≡ ⊥ =⇒ s′.w ′.documents.j .origin ≡ origin) then
86: let s′.w ′.documents.j .scriptinputs := s′.w ′.documents.j .scriptinputs

↪→ +〈〉 〈POSTMESSAGE, s′.w .nonce, docorigin,message〉
87: stop 〈〉, s′

88: case else
89: stop
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Algorithm 8 Web Browser Model: Process an HTTP response.
1: function PROCESSRESPONSE(response, reference, request , requestUrl , key , a, f , s′)
2: if Set-Cookie ∈ response.headers then
3: for each c ∈〈〉 response.headers [Set-Cookie], c ∈ Cookies do
4: let s′.cookies [request .host]

↪→ := AddCookie(s′.cookies [request .host] , c, requestUrl .protocol)

5: if Strict-Transport-Security ∈ response.headers ∧ requestUrl .protocol ≡ S then
6: let s′.sts := s′.sts +〈〉 request .host

7: if Referer ∈ request .headers then
8: let referrer := request .headers[Referer]
9: else

10: let referrer := ⊥
11: if Location ∈ response.headers ∧ response.status ∈ {303, 307} then
12: let url := response.headers [Location]
13: if url .fragment ≡ ⊥ then
14: let url .fragment := requestUrl .fragment

15: let method ′ := request .method
16: let body ′ := request .body
17: if Origin ∈ request .headers

↪→ ∧ request .headers[Origin] 6= ♦
↪→ ∧ (〈url .host, url .protocol〉 ≡ 〈request .host, requestUrl .protocol〉

↪→ ∨ 〈request .host, requestUrl .protocol〉 ≡ request .headers[Origin]) then
18: let origin := request .headers[Origin]
19: else
20: let origin := ♦

21: if response.status ≡ 303 ∧ request .method 6∈ {GET, HEAD} then
22: let method ′ := GET

23: let body ′ := 〈〉
24: if ∃w ∈ Subwindows(s′) such that s′.w .nonce ≡ π2(reference) then → Do not redirect XHRs.
25: let req := 〈HTTPReq, ν6,method ′, url .host, url .path, url .parameters, 〈〉, body ′〉
26: let referrerPolicy := response.headers[ReferrerPolicy]
27: call HTTP_SEND(reference, req , url , origin, referrer , referrerPolicy , a, s′)
28: else
29: stop 〈〉, s′

30: switch π1(reference) do
31: case REQ

32: let w ← Subwindows(s′) such that s′.w .nonce ≡ π2(reference) if possible;
↪→ otherwise stop → normal response

33: if response.body 6∼ 〈∗, ∗〉 then
34: stop 〈〉, s′

35: let script := π1(response.body)
36: let scriptstate := π2(response.body)
37: let d := 〈ν7, requestUrl , response.headers, referrer , script , scriptstate, 〈〉, 〈〉,>〉
38: if s′.w .documents ≡ 〈〉 then
39: let s′.w .documents := 〈d〉
40: else
41: let i ← N such that s′.w .documents.i .active ≡ >
42: let s′.w .documents.i .active := ⊥
43: remove s′.w .documents.(i + 1) and all following documents

↪→ from s′.w .documents
44: let s′.w .documents := s′.w .documents +〈〉 d

45: stop 〈〉, s′

46: case XHR

47: let w ← Subwindows(s′), d such that s′.d .nonce ≡ π2(reference)
↪→ ∧ s′.d = s′.w .activedocument if possible; otherwise stop
→ process XHR response

48: let headers := response.headers− Set-Cookie
49: let s′.d .scriptinputs := s′.d .scriptinputs +〈〉

〈XMLHTTPREQUEST, headers, response.body, π3(reference)〉
50: stop 〈〉, s′
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for navigation (e.g., for opening a link). When it is given a window reference (nonce) window ,
this function returns a pointer to a selected window term in s′:
– If window is the string _BLANK, a new window is created and a pointer to that window is

returned.
– If window is a nonce (reference) and there is a window term with a reference of that value

in the windows in s′, a pointer w ′ to that window term is returned, as long as the window is
navigable by the current window’s document (as defined by NavigableWindows above).

In all other cases, w is returned instead (the script navigates its own window).
• The function GETWINDOW (Algorithm 2) takes a window reference as input and returns a

pointer to a window as above, but it checks only that the active documents in both windows are
same-origin. It creates no new windows.

• The function CANCELNAV (Algorithm 3) is used to stop any pending requests for a specific
window. From the pending requests and pending DNS requests it removes any requests with
the given window reference.

• The function HTTP_SEND (Algorithm 4) takes an HTTP request message as input, adds cookie
and origin headers to the message, creates a DNS request for the hostname given in the request
and stores the request in s′.pendingDNS until the DNS resolution finishes. reference is a reference
as defined in Definition 32. url contains the full URL of the request (this is mainly used to
retrieve the protocol that should be used for this message, and to store the fragment identifier
for use after the document was loaded). origin is the origin header value that is to be added to
the HTTP request.

• The functions NAVBACK (Algorithm 5) and NAVFORWARD (Algorithm 6), navigate a window
backward or forward. More precisely, they deactivate one document and activate that document’s
preceding document or succeeding document, respectively. If no such predecessor/successor exists,
the functions do not change the state.

• The function RUNSCRIPT (Algorithm 7) performs a script execution step of the script in the
document s′.d (which is part of the window s′.w). A new script and document state is chosen
according to the relation defined by the script and the new script and document state is saved.
Afterwards, the command that the script issued is interpreted.

• The function PROCESSRESPONSE (Algorithm 8) is responsible for processing an HTTP response
(response) that was received as the response to a request (request) that was sent earlier. reference
is a reference as defined in Definition 32. requestUrl contains the URL used when retrieving the
document.
The function first saves any cookies that were contained in the response to the browser state,
then checks whether a redirection is requested (Location header). If that is not the case, the
function creates a new document (for normal requests) or delivers the contents of the response
to the respective receiver (for XHR responses).

Browser Relation We can now define the relation Rwebbrowser of a web browser atomic process
as follows:

Definition 39. The pair ((〈a, f,m〉, s) , (M, s′)) belongs to Rwebbrowser iff the non-deterministic
Algorithm 9 (or any of the functions called therein), when given (〈a, f,m〉, s) as input, terminates
with stop M , s′, i.e., with output M and s′. �

Recall that 〈a, f,m〉 is an (input) event and s is a (browser) state, M is a sequence of (output)
protoevents, and s′ is a new (browser) state (potentially with placeholders for nonces).

2.8 Definition of Web Browsers
Finally, we define web browser atomic Dolev-Yao processes as follows:

Definition 40 (Web Browser atomic Dolev-Yao Process). A web browser atomic Dolev-Yao
process is an atomic Dolev-Yao process of the form p = (Ip, Zwebbrowser, Rwebbrowser, s

p
0) for a set Ip

of addresses, Zwebbrowser and Rwebbrowser as defined above, and an initial state sp0 ∈ Zwebbrowser. �
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Algorithm 9 Web Browser Model: Main Algorithm.
Input: 〈a, f,m〉, s
1: let s′ := s
2: if s.isCorrupted 6≡ ⊥ then
3: let s′.pendingRequests := 〈m, s.pendingRequests〉 → Collect incoming messages
4: let m′ ← dV (s

′)
5: let a′ ← IPs
6: stop 〈〈a′, a,m′〉〉, s′

7: if m ≡ TRIGGER then → A special trigger message.
8: let switch ← {script, urlbar, reload, forward, back}
9: if switch ≡ script then → Run some script.

10: let w ← Subwindows(s′) such that s′.w .documents 6= 〈〉
↪→ if possible; otherwise stop → Pointer to some window.

11: let d := w +〈〉 activedocument
12: call RUNSCRIPT(w , d , a, s′)
13: else if switch ≡ urlbar then → Create some new request.
14: let newwindow ← {>,⊥}
15: if newwindow ≡ > then → Create a new window.
16: let windownonce := ν1
17: let w′ := 〈windownonce, 〈〉,⊥〉
18: let s′.windows := s′.windows +〈〉 w′

19: else → Use existing top-level window.
20: let tlw ← N such that s′.tlw .documents 6= 〈〉

↪→ if possible; otherwise stop → Pointer to some top-level window.
21: let windownonce := s′.tlw .nonce
22: let protocol ← {P, S}
23: let host ← Doms
24: let path ← S
25: let fragment ← S
26: let parameters ← [S× S]
27: let url := 〈URL, protocol , host , path, parameters, fragment〉
28: let req := 〈HTTPReq, ν2, GET, host , path, parameters, 〈〉, 〈〉〉
29: call HTTP_SEND(〈REQ,windownonce〉, req , url , ⊥, ⊥, ⊥, a, s′)
30: else if switch ≡ reload then → Reload some document.
31: let w ← Subwindows(s′) such that s′.w .documents 6= 〈〉

↪→ if possible; otherwise stop → Pointer to some window.
32: let url := s′.w .activedocument.location
33: let req := 〈HTTPReq, ν2, GET, url .host, url .path, url .parameters, 〈〉, 〈〉〉
34: let referrer := s′.w .activedocument.referrer
35: let s′ := CANCELNAV(s′.w .nonce, s′)
36: call HTTP_SEND(〈REQ, s′.w .nonce〉, req , url , ⊥, referrer , ⊥, a, s′)
37: else if switch ≡ forward then
38: let w ← Subwindows(s′) such that s′.w .documents 6= 〈〉

↪→ if possible; otherwise stop → Pointer to some window.
39: call NAVFORWARD(w , s′)
40: else if switch ≡ back then
41: let w ← Subwindows(s′) such that s′.w .documents 6= 〈〉

↪→ if possible; otherwise stop → Pointer to some window.
42: call NAVBACK(w , s′)
43: else if m ≡ FULLCORRUPT then → Request to corrupt browser
44: let s′.isCorrupted := FULLCORRUPT

45: stop 〈〉, s′
46: else if m ≡ CLOSECORRUPT then → Close the browser
47: let s′.secrets := 〈〉
48: let s′.windows := 〈〉
49: let s′.pendingDNS := 〈〉
50: let s′.pendingRequests := 〈〉
51: let s′.sessionStorage := 〈〉
52: let s′.cookies ⊂〈〉 Cookies such that

↪→ (c ∈〈〉 s′.cookies)⇐⇒ (c ∈〈〉 s.cookies ∧ c.content.session ≡ ⊥)
53: let s′.isCorrupted := CLOSECORRUPT

54: stop 〈〉, s′
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55: else if ∃ 〈reference, request , url , key , f〉 ∈〈〉 s′.pendingRequests such that
↪→ π1(decs(m, key)) ≡ HTTPResp then → Encrypted HTTP response

56: let m′ := decs(m, key)
57: if m′.nonce 6≡ request .nonce then
58: stop
59: remove 〈reference, request , url , key , f〉 from s′.pendingRequests
60: call PROCESSRESPONSE(m′, reference, request , url , key , a, f , s′)
61: else if π1(m) ≡ HTTPResp ∧ ∃ 〈reference, request , url ,⊥, f〉 ∈〈〉 s′.pendingRequests such that

↪→ m.nonce ≡ request .nonce then → Plain HTTP Response
62: remove 〈reference, request , url ,⊥, f〉 from s′.pendingRequests
63: call PROCESSRESPONSE(m, reference, request , url , key , a, f , s′)
64: else if m ∈ DNSResponses then → Successful DNS response
65: if m.nonce 6∈ s.pendingDNS ∨m.result 6∈ IPs

↪→ ∨ m.domain 6≡ s.pendingDNS[m.nonce].request.host then
66: stop
67: let 〈reference,message, url〉 := s.pendingDNS[m.nonce]
68: if url .protocol ≡ S then
69: let s′.pendingRequests := s′.pendingRequests

↪→ +〈〉 〈reference, message, url , ν3, m.result〉
70: let message := enca(〈message, ν3〉, s′.keyMapping [message.host])
71: else
72: let s′.pendingRequests := s′.pendingRequests

↪→ +〈〉 〈reference, message, url , ⊥, m.result〉
73: let s′.pendingDNS := s′.pendingDNS − m.nonce
74: stop 〈〈m.result, a,message〉〉, s′

75: stop

Algorithm 10 Function to retrieve an unhandled input message for a script.
1: function CHOOSEINPUT(s′, scriptinputs)
2: let iid such that iid ∈ {1, · · · , |scriptinputs|} ∧ iid 6∈〈〉 s′.handledInputs if possible;

↪→ otherwise return (⊥, s′)
3: let input := πiid(scriptinputs)
4: let s′.handledInputs := s′.handledInputs+〈〉 iid
5: return (input , s′)

2.9 Helper Functions
In order to simplify the description of scripts, we use several helper functions.

CHOOSEINPUT (Algorithm 10) The state of a document contains a term, say scriptinputs,
which records the input this document has obtained so far (via XHRs and postMessages). If
the script of the document is activated, it will typically need to pick one input message from
scriptinputs and record which input it has already processed. For this purpose, the function
CHOOSEINPUT(s′, scriptinputs) is used, where s′ denotes the scripts current state. It saves the
indexes of already handled messages in the scriptstate s′ and chooses a yet unhandled input message
from scriptinputs. The index of this message is then saved in the scriptstate (which is returned to
the script).

CHOOSEFIRSTINPUTPAT (Algorithm 11) Similar to the function CHOOSEINPUT above,
we define the function CHOOSEFIRSTINPUTPAT. This function takes the term scriptinputs, which
as above records the input this document has obtained so far (via XHRs and postMessages, append-
only), and a pattern. If called, this function chooses the first message in scriptinputs that matches
pattern and returns it. This function is typically used in places, where a script only processes the
first message that matches the pattern. Hence, we omit recording the usage of an input.

PARENTWINDOW To determine the nonce referencing the parent window in the browser,
the function PARENTWINDOW(tree, docnonce) is used. It takes the term tree, which is the (partly
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Algorithm 11 Function to extract the first script input message matching a specific pattern.
1: function CHOOSEFIRSTINPUTPAT(scriptinputs, pattern)
2: let i such that i = min{j : πj(scriptinputs) ∼ pattern} if possible; otherwise return ⊥
3: return πi(scriptinputs)

cleaned) tree of browser windows the script is able to see and the document nonce docnonce, which
is the nonce referencing the current document the script is running in, as input. It outputs the
nonce referencing the window which directly contains in its subwindows the window of the document
referenced by docnonce. If there is no such window (which is the case if the script runs in a document
of a top-level window), PARENTWINDOW returns ⊥.

PARENTDOCNONCE The function PARENTDOCNONCE(tree, docnonce) determines (simi-
lar to PARENTWINDOW above) the nonce referencing the active document in the parent window
in the browser . It takes the term tree, which is the (partly cleaned) tree of browser windows the
script is able to see and the document nonce docnonce, which is the nonce referencing the current
document the script is running in, as input. It outputs the nonce referencing the active document
in the window which directly contains in its subwindows the window of the document referenced
by docnonce. If there is no such window (which is the case if the script runs in a document of a
top-level window) or no active document, PARENTDOCNONCE returns docnonce.

SUBWINDOWS This function takes a term tree and a document nonce docnonce as input
just as the function above. If docnonce is not a reference to a document contained in tree, then
SUBWINDOWS(tree, docnonce) returns 〈〉. Otherwise, let 〈docnonce, location, 〈〉, referrer , script ,
scriptstate, scriptinputs, subwindows, active〉 denote the subterm of tree corresponding to the
document referred to by docnonce. Then, SUBWINDOWS(tree, docnonce) returns subwindows.

AUXWINDOW This function takes a term tree and a document nonce docnonce as input as
above. From all window terms in tree that have the window containing the document identified by
docnonce as their opener, it selects one non-deterministically and returns its nonce. If there is no
such window, it returns the nonce of the window containing docnonce.

AUXDOCNONCE Similar to AUXWINDOW above, the function AUXDOCNONCE takes a term
tree and a document nonce docnonce as input. From all window terms in tree that have the window
containing the document identified by docnonce as their opener, it selects one non-deterministically
and returns its active document’s nonce. If there is no such window or no active document, it
returns docnonce.

OPENERWINDOW This function takes a term tree and a document nonce docnonce as input
as above. It returns the window nonce of the opener window of the window that contains the
document identified by docnonce. Recall that the nonce identifying the opener of each window is
stored inside the window term. If no document with nonce docnonce is found in the tree tree or the
document with nonce docnonce is not directly contained in a top-level window, ♦ is returned.

GETWINDOW This function takes a term tree and a document nonce docnonce as input as
above. It returns the nonce of the window containing docnonce.

GETORIGIN To extract the origin of a document, the function GETORIGIN(tree, docnonce) is
used. This function searches for the document with the identifier docnonce in the (cleaned) tree tree
of the browser’s windows and documents. It returns the origin o of the document. If no document
with nonce docnonce is found in the tree tree, ♦ is returned.

GETPARAMETERS Works exactly as GETORIGIN, but returns the document’s parameters
instead.
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Algorithm 12 Relation of a DNS server Rd.
Input: 〈a, f,m〉, s
1: let domain, n such that 〈DNSResolve, domain, n〉 ≡ m if possible; otherwise stop 〈〉, s
2: if domain ∈ s then
3: let addr := s[domain]
4: let m′ := 〈DNSResolved, domain, addr , n〉
5: stop 〈〈f, a,m′〉〉, s
6: stop 〈〉, s

2.10 DNS Servers
Definition 41. A DNS server d (in a flat DNS model) is modeled in a straightforward way as an
atomic DY process (Id, {sd0}, Rd, sd0). It has a finite set of addresses Id and its initial (and only)
state sd0 encodes a mapping from domain names to addresses of the form

sd0 = 〈〈domain1, a1〉, 〈domain2, a2〉, . . .〉 .

DNS queries are answered according to this table (if the requested DNS name cannot be found in
the table, the request is ignored). �

The relation Rd ⊆ (E × {sd0})× (2E × {sd0}) of d above is defined by Algorithm 12.

2.11 Web Systems
The web infrastructure and web applications are formalized by what is called a web system. A web
system contains, among others, a (possibly infinite) set of DY processes, modeling web browsers,
web servers, DNS servers, and attackers (which may corrupt other entities, such as browsers).

Definition 42. A web system WS = (W , S , script, E0) is a tuple with its components defined as
follows:

The first component, W , denotes a system (a set of DY processes) and is partitioned into the
sets Hon, Web, and Net of honest, web attacker, and network attacker processes, respectively.

Every p ∈Web ∪Net is an attacker process for some set of sender addresses A ⊆ IPs. For a web
attacker p ∈ Web, we require its set of addresses Ip to be disjoint from the set of addresses of all
other web attackers and honest processes, i.e., Ip ∩ Ip′ = ∅ for all p′ 6= p, p′ ∈ Hon ∪Web. Hence, a
web attacker cannot listen to traffic intended for other processes. Also, we require that A = Ip, i.e.,
a web attacker can only use sender addresses it owns. Conversely, a network attacker may listen to
all addresses (i.e., no restrictions on Ip) and may spoof all addresses (i.e., the set A may be IPs).

Every p ∈ Hon is a DY process which models either a web server, a web browser, or a DNS
server. Just as for web attackers, we require that p does not spoof sender addresses and that its set
of addresses Ip is disjoint from those of other honest processes and the web attackers.

The second component, S , is a finite set of scripts such that Ratt ∈ S . The third component, script,
is an injective mapping from S to S, i.e., by script every s ∈ S is assigned its string representation
script(s).

Finally, E0 is an (infinite) sequence of events, containing an infinite number of events of the
form 〈a, a, TRIGGER〉 for every a ∈

⋃
p∈W Ip.

A run of WS is a run of W initiated by E0. �

2.12 Generic HTTPS Server Model
This base model can be used to ease modeling of HTTPS server atomic processes. It defines
placeholder algorithms that can be superseded by more detailed algorithms to describe a concrete
relation for an HTTPS server.

Definition 43 (Base state for an HTTPS server). The state of each HTTPS server that is an
instantiation of this relation must contain at least the following subterms: pendingDNS ∈

[
N × TN

]
,

pendingRequests ∈ TN (both containing arbitrary terms), DNSaddress ∈ IPs (containing the IP
address of a DNS server), keyMapping ∈

[
Doms× TN

]
(containing a mapping from domains to
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public keys), tlskeys ∈ [Doms×N ] (containing a mapping from domains to private keys), and
corrupt ∈ TN (either ⊥ if the server is not corrupted, or an arbitrary term otherwise). �

We note that in concrete instantiations of the generic HTTPS server model, there is no need to
extract information from these subterms or alter these subterms.

Let νn0 and νn1 denote placeholders for nonces that are not used in the concrete instantiation
of the server. We now define the default functions of the generic web server in Algorithms 13–17,
and the main relation in Algorithm 18.

Algorithm 13 Generic HTTPS Server Model: Sending a DNS message (in preparation for sending
an HTTPS message).

1: function HTTPS_SIMPLE_SEND(reference, message, a, s′)
2: let s′.pendingDNS[νn0] := 〈reference,message〉
3: stop 〈〈s′.DNSaddress, a, 〈DNSResolve,message.host, νn0〉〉〉, s′

Algorithm 14 Generic HTTPS Server Model: Default HTTPS response handler.
1: function PROCESS_HTTPS_RESPONSE(m, reference, request , a, f , s′)
2: stop

Algorithm 15 Generic HTTPS Server Model: Default trigger event handler.
1: function PROCESS_TRIGGER(a, s′)
2: stop
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Algorithm 16 Generic HTTPS Server Model: Default HTTPS request handler.
1: function PROCESS_HTTPS_REQUEST(m, k, a, f , s′)
2: stop

Algorithm 17 Generic HTTPS Server Model: Default handler for other messages.
1: function PROCESS_OTHER(m, a, f , s′)
2: stop

Algorithm 18 Generic HTTPS Server Model: Main relation of a generic HTTPS server
Input: 〈a, f,m〉, s
1: let s′ := s
2: if s′.corrupt 6≡ ⊥ ∨m ≡ CORRUPT then
3: let s′.corrupt := 〈〈a, f,m〉, s′.corrupt〉
4: let m′ ← dV (s

′)
5: let a′ ← IPs
6: stop 〈〈a′, a,m′〉〉, s′

7: if ∃mdec, k, k′, inDomain such that 〈mdec, k〉 ≡ deca(m, k
′) ∧ 〈inDomain, k′〉 ∈ s.tlskeys then

8: let n, method , path, parameters, headers, body such that
↪→ 〈HTTPReq, n,method , inDomain, path, parameters, headers, body〉 ≡ mdec

↪→ if possible; otherwise stop
9: call PROCESS_HTTPS_REQUEST(mdec, k, a, f , s′)

10: else if m ∈ DNSResponses then → Successful DNS response
11: if m.nonce 6∈ s.pendingDNS ∨m.result 6∈ IPs

↪→ ∨ m.domain 6≡ s.pendingDNS[m.nonce].2.host then
12: stop
13: let reference := s.pendingDNS[m.nonce].1
14: let request := s.pendingDNS[m.nonce].2
15: let s′.pendingRequests := s′.pendingRequests +〈〉 〈reference, request , νn1, m.result〉
16: let message := enca(〈request , νn1〉, s′.keyMapping [request .host])
17: let s′.pendingDNS := s′.pendingDNS − m.nonce
18: stop 〈〈m.result, a,message〉〉, s′
19: else if ∃ 〈reference, request , key , f〉 ∈〈〉 s′.pendingRequests

↪→ such that π1(decs(m, key)) ≡ HTTPResp then → Encrypted HTTP response
20: let m′ := decs(m, key)
21: if m′.nonce 6≡ request .nonce then
22: stop
23: remove 〈reference, request , key , f〉 from s′.pendingRequests
24: call PROCESS_HTTPS_RESPONSE(m′, reference, request , a, f , s′)
25: else if m ≡ TRIGGER then → Process was triggered
26: call PROCESS_TRIGGER(a, s′)
27: else
28: call PROCESS_OTHER(m, a, f , s′)
29: stop

2.13 General Security Properties of the WIM
We now repeat general application independent security properties of the WIM [10].

Let WS = (W , S , script, E0) be a web system. In the following, we write sx = (Sx, Ex) for the
states of a web system.

Definition 44 (Emitting Events). Given an atomic process p, an event e, and a finite run
ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) or an infinite run ρ = ((S0, E0, N0), . . . ) we say that p emits
e iff there is a processing step in ρ of the form

(Si, Ei, N i) −−−→
p→E

(Si+1, Ei+1, N i+1)

for some i ≥ 0 and a sequence of events E with e ∈〈〉 E. We also say that p emits m iff e = 〈x, y,m〉
for some addresses x, y. �
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Definition 45. We say that a term t is derivably contained in (a term) t′ for (a set of DY processes)
P (in a processing step si → si+1 of a run ρ = (s0, s1, . . .)) if t is derivable from t′ with the knowledge
available to P , i.e.,

t ∈ d∅({t′} ∪
⋃
p∈P

Si+1(p))

�

Definition 46. We say that a set of processes P leaks a term t (in a processing step si → si+1)
to a set of processes P ′ if there exists a message m that is emitted (in si → si+1) by some p ∈ P
and t is derivably contained in m for P ′ in the processing step si → si+1. If we omit P ′, we define
P ′ := W \ P . If P is a set with a single element, we omit the set notation. �

Definition 47. We say that an DY process p created a message m (at some point) in a run if m
is derivably contained in a message emitted by p in some processing step and if there is no earlier
processing step where m is derivably contained in a message emitted by some DY process p′. �

Definition 48. We say that a browser b accepted a message (as a response to some request)
if the browser decrypted the message (if it was an HTTPS message) and called the function
PROCESSRESPONSE, passing the message and the request (see Algorithm 8). �

Definition 49. We say that an atomic DY process p knows a term t in some state s = (S,E,N)
of a run if it can derive the term from its knowledge, i.e., t ∈ d∅(S(p)). �

Definition 50. Let N ⊆ N , t ∈ TN (X), and k ∈ TN (X). We say that k appears only as a public
key in t, if

1. If t ∈ N ∪X, then t 6= k

2. If t = f(t1, . . . , tn), for f ∈ Σ and ti ∈ TN (X) (i ∈ {1, . . . , n}), then f = pub or for all ti, k
appears only as a public key in ti.

�

Definition 51. We say that a script initiated a request r if a browser triggered the script (in Line 10
of Algorithm 7) and the first component of the command output of the script relation is either HREF,
IFRAME, FORM, or XMLHTTPREQUEST such that the browser issues the request r in the same step as a
result. �

Definition 52. We say that an instance of the generic HTTPS server s accepted a message (as
a response to some request) if the server decrypted the message (if it was an HTTPS message)
and called the function PROCESS_HTTPS_RESPONSE, passing the message and the request (see
Algorithm 18). �

For a run ρ = s0, s1, . . . of any WS , we state the following lemmas:

Lemma 1. If in the processing step si → si+1 of a run ρ of WS an honest browser b

(I) emits an HTTPS request of the form

m = enca(〈req , k〉, pub(k′))

(where req is an HTTP request, k is a nonce (symmetric key), and k′ is the private key of
some other DY process u), and

(II) in the initial state s0, for all processes p ∈W \{u}, the private key k′ appears only as a public
key in S0(p), and

(III) u never leaks k′,

then all of the following statements are true:
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(1) There is no state of WS where any party except for u knows k′, thus no one except for u can
decrypt m to obtain req .

(2) If there is a processing step sj → sj+1 where the browser b leaks k to W \ {u, b} there is a
processing step sh → sh+1 with h < j where u leaks the symmetric key k to W \ {u, b} or the
browser is fully corrupted in sj .

(3) The value of the host header in req is the domain that is assigned the public key pub(k′) in
the browsers’ keymapping s0.keyMapping (in its initial state).

(4) If b accepts a response (say, m′) to m in a processing step sj → sj+1 and b is honest in sj
and u did not leak the symmetric key k to W \ {u, b} prior to sj , then u created the HTTPS
response m′ to the HTTPS request m, i.e., the nonce of the HTTP request req is not known
to any atomic process p, except for the atomic processes b and u.

Proof. (1) follows immediately from the pre-conditions.
The process u never leaks k′, and initially, the private key k′ appears only as a public key in all

other process states. As the equational theory does not allow the extraction of a private key x from
a public key pub(x), the other processes can never derive k′.

Thus, even with the knowledge of all nonces (except for those of u), k′ can never be derived
from any network output of u, and k′ cannot be known to any other party. Thus, nobody except
for u can derive req from m.

(2) We assume that b leaks k to W \ {u, b} in the processing step sj → sj+1 without u prior
leaking the key k to anyone except for u and b and that the browser is not fully corrupted in sj ,
and lead this to a contradiction.

The browser is honest in si. From the definition of the browser b, we see that the key k is always
chosen as a fresh nonce (placeholder ν3 in Lines 64ff. of Algorithm 9) that is not used anywhere
else. Further, the key is stored in the browser’s state in pendingRequests. The information from
pendingRequests is not extracted or used anywhere else (in particular it is not accessible by scripts).
If the browser becomes closecorrupted prior to sj (and after si), the key cannot be used anymore
(compare Lines 46ff. of Algorithm 9). Hence, b does not leak k to any other party in sj (except for
u and b). This proves (2).

(3) Per the definition of browsers (Algorithm 9), a host header is always contained in HTTP
requests by browsers. From Line 70 of Algorithm 9 we can see that the encryption key for the
request req was chosen using the host header of the message. It is chosen from the keyMapping in
the browser’s state, which is never changed during ρ. This proves (3).

(4) An HTTPS response m′ that is accepted by b as a response to m has to be encrypted with
k. The nonce k is stored by the browser in the pendingRequests state information. The browser
only stores freshly chosen nonces there (i.e., the nonces are not used twice, or for other purposes
than sending one specific request). The information cannot be altered afterwards (only deleted)
and cannot be read except when the browser checks incoming messages. The nonce k is only known
to u (which did not leak it to any other party prior to sj) and b (which did not leak it either, as u
did not leak it and b is honest, see (2)). The browser b cannot send responses. This proves (4).

Corollary. In the situation of Lemma 1, as long as u does not leak the symmetric key k to W \{u, b}
and the browser does not become fully corrupted, k is not known to any DY process p 6∈ {u, b} (i.e.,
@ s′ = (S′, E′) ∈ ρ: k ∈ dNp(S′(p))).

Lemma 2. If for some si ∈ ρ an honest browser b has a document d in its state Si(b).windows with
the origin 〈dom, S〉 where dom ∈ Domain, and Si(b).keyMapping[dom] ≡ pub(k) with k ∈ N being
a private key, and there is only one DY process p that knows the private key k in all sj , j ≤ i, then
b extracted (in Line 37 in Algorithm 8) the script in that document from an HTTPS response that
was created by p.

Proof. The origin of the document d is set only once: In Line 37 of Algorithm 8. The values
(domain and protocol) used there stem from the information about the request (say, req) that led
to the loading of d. These values have been stored in pendingRequests between the request and
the response actions. The contents of pendingRequests are indexed by freshly chosen nonces and
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can never be altered or overwritten (only deleted when the response to a request arrives). The
information about the request req was added to pendingRequests in Line 69 (or Line 72 which we
can exclude as we will see later) of Algorithm 9. In particular, the request was an HTTPS request iff
a (symmetric) key was added to the information in pendingRequests. When receiving the response
to req , it is checked against that information and accepted only if it is encrypted with the proper
key and contains the same nonce as the request (say, n). Only then the protocol part of the origin
of the newly created document becomes S. The domain part of the origin (in our case dom) is taken
directly from the pendingRequests and is thus guaranteed to be unaltered.

From Line 70 of Algorithm 9 we can see that the encryption key for the request req was actually
chosen using the host header of the message which will finally be the value of the origin of the docu-
ment d. Since b therefore selects the public key Si(b).keyMapping[dom] = S0(b).keyMapping[dom] ≡
pub(k) for p (the key mapping cannot be altered during a run), we can see that req was encrypted
using a public key that matches a private key which is only (if at all) known to p. With Lemma 1
we see that the symmetric encryption key for the response, k, is only known to b and the respective
web server. The same holds for the nonce n that was chosen by the browser and included in the
request. Thus, no other party than p can encrypt a response that is accepted by the browser b and
which finally defines the script of the newly created document.

Lemma 3. If in a processing step si → si+1 of a run ρ of WS an honest browser b issues an HTTP(S)
request with the Origin header value 〈dom, S〉 where Si(b).keyMapping[dom] ≡ pub(k) with k ∈ N
being a private key, and there is only one DY process p that knows the private key k in all sj , j ≤ i,
then
• that request was initiated by a script that b extracted (in Line 37 in Algorithm 8) from an
HTTPS response that was created by p, or

• that request is a redirect to a response of a request that was initiated by such a script.

Proof. The browser algorithms create HTTP requests with an origin header by calling the HTTP_SEND
function (Algorithm 4), with the origin being the fourth input parameter. This function adds the
origin header only if this input parameter is not ⊥.

The browser calls the HTTP_SEND function with an origin that is not ⊥ only in the following
places:
• Line 51 of Algorithm 7
• Line 72 of Algorithm 7
• Line 27 of Algorithm 8
In the first two cases, the request was initiated by a script. The Origin header of the request

is defined by the origin of the script’s document. With Lemma 2 we see that the content of the
document, in particular the script, was indeed provided by p.

In the last case (Location header redirect), as the origin is not ♦ , the condition of Line 17 of
Algorithm 8 must have been true and the origin value is set to the value of the origin header of the
request. In particular, this implies that an origin header does not change during redirects (unless
set to ♦; in this case, the value stays the same in the subsequent redirects). Thus, the original
request must have been created by the first two cases shown above.

The following lemma is similar to Lemma 1, but is applied to the generic HTTPS server (instead
of the web browser).

Lemma 4. If in the processing step si → si+1 of a run ρ of WS an honest instance s of the generic
HTTPS server model

(I) emits an HTTPS request of the form

m = enca(〈req , k〉, pub(k′))

(where req is an HTTP request, k is a nonce (symmetric key), and k′ is the private key of
some other DY process u), and
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(II) in the initial state s0, for all processes p ∈W \{u}, the private key k′ appears only as a public
key in S0(p),

(III) u never leaks k′,

(IV) the instance model defined on top of the HTTPS server does not read or write the pendingRequests
subterm of its state,

(V) the instance model defined on top of the HTTPS server does not emit messages in HTTPSRequests,

(VI) the instance model defined on top of the HTTPS server does not change the values of the
keyMapping subterm of its state, and

(VII) when receiving HTTPS requests of the form enca(〈req ′, k2〉, pub(k′)), u uses the nonce of the
HTTP request req ′ only as nonce values of HTTPS responses encrypted with the symmetric
key k2,

(VIII) when receiving HTTPS requests of the form enca(〈req ′, k2〉, pub(k′)), u uses the symmetric
key k2 only for symmetrically encrypting HTTP responses (and in particular, k2 is not part
of a payload of any messages sent out by u),

then all of the following statements are true:

(1) There is no state of WS where any party except for u knows k′, thus no one except for u can
decrypt m to obtain req .

(2) If there is a processing step sj → sj+1 where some process leaks k to W \ {u, s}, there is a
processing step sh → sh+1 with h < j where u leaks the symmetric key k to W \ {u, s} or the
process s is corrupted in sj .

(3) The value of the host header in req is the domain that is assigned the public key pub(k′) in
S0(s).keyMapping (i.e., in the initial state of s).

(4) If s accepts a response (say, m′) to m in a processing step sj → sj+1 and s is honest in sj
and u did not leak the symmetric key k to W \ {u, s} prior to sj , then u created the HTTPS
response m′ to the HTTPS request m, i.e., the nonce of the HTTP request req is not known
to any atomic process p, except for the atomic processes s and u.

Proof. (1) follows immediately from the pre-conditions. The proof is the same as for Lemma 1:
The process u never leaks k′, and initially, the private key k′ appears only as a public key in all

other process states. As the equational theory does not allow the extraction of a private key x from
a public key pub(x), the other processes can never derive k′.

Thus, even with the knowledge of all nonces (except for those of u), k′ can never be derived
from any network output of u, and k′ cannot be known to any other party. Thus, nobody except
for u can derive req from m.

(2) We assume that some process leaks k to W \{u, s} in the processing step sj → sj+1 without
u prior leaking the key k to anyone except for u and s and that the process s is not corrupted in sj ,
and lead this to a contradiction.

The process s is honest in si. s emits HTTPS requests like m only in Line 18 of Algorithm 18:
• The message emitted in Line 3 of Algorithm 13 has a different message structure
• As s is honest, it does not send the message of Line 6 of Algorithm 18
• There is no other place in the generic HTTPS server model where messages are emitted and due
to pre-condition (V), the application-specific model does not emit HTTPS requests.
The value k, which is the placeholder νn1 in Algorithm 18, is only stored in the pendingRequests

subterm of the state of s, i.e., in Si+1(s).pendingRequests. Other than that, s only accesses this
value in Line 19 of Algorithm 18, where it is only used to decrypt the response in Line 20 (in
particular, the key is not propagated to the application-specific model, and the key cannot be
contained within the payload of an response due to (VIII)). We note that there is no other line in
the model of the generic HTTPS server where this subterm is accessed and the application-specific
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model does not access this subterm due to pre-condition (IV). Hence, s does not leak k to any other
party in sj (except for u and s). This proves (2).

(3) From Line 16 of Algorithm 18 we can see that the encryption key for the message m
was chosen using the host header of the request. It is chosen from the keyMapping subterm of
the state of s, which is never changed during ρ by the HTTPS server and never changed by the
application-specific model due to pre-condition (VI). This proves (3).

(4)

Response was encrypted with k. An HTTPS response m′ that is accepted by s as a
response to m has to be encrypted with k:

The decryption key is taken from the pendingRequests subterm of its state in Line 19 of Algo-
rithm 18, where s only stores fresh nonces as keys that are added to requests as symmetric keys
(see also Lines 15 and 16). The nonces (symmetric keys) are not used twice, or for other purposes
than sending one specific request.

Only s and u can create the response. As shown previously, only s and u can derive the
symmetric key (as s is honest in sj). Thus, m′ must have been created by either s or u.

s cannot have created the response. We assume that s emitted the message m′ and lead
this to a contradiction.

The generic server algorithms of s (when being honest) emit messages only in two places: In
Line 3 of Algorithm 13, where a DNS request is sent, and in Line 18 of Algorithm 18, where a
message with a different structure than m′ is created (as m′ is accepted by the server, m′ must be
a symmetrically encrypted ciphertext).

Thus, the instance model of s must have created the response m′.
Due to Precondition (IV), the instance model of s cannot read the pendingRequests subterm

of its state. The symmetric key is generated freshly by the generic server algorithm in Lines 15
and 16 of Algorithm 18 and stored only in pendingRequests.

As the generic algorithms do not call any of the handlers with a symmetric key stored in
pendingRequests., it follows that the instance model derived the key from a message payload in
the instantiation of one of the handlers. Let m̃ denote this message payload.

As the server instance model cannot derive the symmetric key without processing a message
from which it can derive the symmetric key, and as the server algorithm only create the original
request m as the only message with the symmetric key as a payload, it follows that u must have
created m̃, as no other process can derive the symmetric key from m.

However, when receiving m, u will use the symmetric key only as an encryption key, and in
particular, will not create a message where the symmetric key is a payload (Precondition (VIII)).

Thus, the symmetric key cannot be derived by the instance of the server model, which is a
contradiction to the statement that the instance model of s must have created the response m′.

3 Modeling Decisions
In this section, design choices regarding the modeling of the WIM are discussed.

3.1 Web attackers can’t perform IP spoofing
Since the exchange of messages in the WIM always assumes a TCP connection (as HTTP is used),
a TCP handshake must be performed before a message can be sent successfully. Since web attackers
are not able to complete such a handshake for an honest process, we only allow network attackers to
perform IP spoofing, i.e., only network attackers can send events with arbitrary sender addresses.

If the WIM is used in a scenario where other transport protocols are used (e.g., UDP), web
attackers can also be allowed to perform IP spoofing.

3.2 Documents can’t contain multiple scripts
As described in section 1.6.2, a document of a window can contain only one script. This script
subsumes both the behavior of a real-world HTML document containing JavaScript and user
interactions with the document. Thus, the WIM also provides only an abstract view on JavaScript.
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The WIM can be extended in this respect so that documents can contain multiple scripts, thus
eliminating the need for subsumption by a single script. This can also involve a more concrete
modeling of JavaScript.

3.3 Domain boundaries of web pages and cookies can’t be extended
The WIM does not allow the extension of the domain boundaries of documents and cookies via the
Document.domain property (which is now deprecated) or the domain attribute of cookies. This
is because these options undermine the security properties of the same origin policy and would
unnecessarily complicate our browser model. However, if needed, the WIM can be extended to
include these features.
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